/**
* @file
* @brief [Kruskals Minimum Spanning
* Tree](https://www.simplilearn.com/tutorials/data-structure-tutorial/kruskal-algorithm)
* implementation
*
* @details
* _Quoted from
* [Simplilearn](https://www.simplilearn.com/tutorials/data-structure-tutorial/kruskal-algorithm)._
*
* Kruskal’s algorithm is the concept that is introduced in the graph theory of
* discrete mathematics. It is used to discover the shortest path between two
* points in a connected weighted graph. This algorithm converts a given graph
* into the forest, considering each node as a separate tree. These trees can
* only link to each other if the edge connecting them has a low value and
* doesn’t generate a cycle in MST structure.
*
* @author [coleman2246](https://github.com/coleman2246)
*/
#include <array> /// for array
#include <iostream> /// for IO operations
#include <limits> /// for numeric limits
#include <cstdint> /// for uint32_t
/**
* @namespace
* @brief Greedy Algorithms
*/
namespace greedy_algorithms {
/**
* @brief Finds the minimum edge of the given graph.
* @param infinity Defines the infinity of the graph
* @param graph The graph that will be used to find the edge
* @returns void
*/
template <typename T, std::size_t N, std::size_t M>
void findMinimumEdge(const T &infinity,
const std::array<std::array<T, N>, M> &graph) {
if (N != M) {
std::cout << "\nWrong input passed. Provided array has dimensions " << N
<< "x" << M << ". Please provide a square matrix.\n";
return;
}
for (int i = 0; i < graph.size(); i++) {
int min = infinity;
int minIndex = 0;
for (int j = 0; j < graph.size(); j++) {
if (i != j && graph[i][j] != 0 && graph[i][j] < min) {
min = graph[i][j];
minIndex = j;
}
}
std::cout << i << " - " << minIndex << "\t" << graph[i][minIndex]
<< "\n";
}
}
} // namespace greedy_algorithms
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
/**
* define a large value for int
* define a large value for float
* define a large value for double
* define a large value for uint32_t
*/
constexpr int INFINITY_INT = std::numeric_limits<int>::max();
constexpr float INFINITY_FLOAT = std::numeric_limits<float>::max();
constexpr double INFINITY_DOUBLE = std::numeric_limits<double>::max();
constexpr uint32_t INFINITY_UINT32 = UINT32_MAX;
// Test case with integer values
std::cout << "\nTest Case 1 :\n";
std::array<std::array<int, 6>, 6> graph1{
0, 4, 1, 4, INFINITY_INT, INFINITY_INT,
4, 0, 3, 8, 3, INFINITY_INT,
1, 3, 0, INFINITY_INT, 1, INFINITY_INT,
4, 8, INFINITY_INT, 0, 5, 7,
INFINITY_INT, 3, 1, 5, 0, INFINITY_INT,
INFINITY_INT, INFINITY_INT, INFINITY_INT, 7, INFINITY_INT, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, graph1);
// Test case with floating values
std::cout << "\nTest Case 2 :\n";
std::array<std::array<float, 3>, 3> graph2{
0.0f, 2.5f, INFINITY_FLOAT,
2.5f, 0.0f, 3.2f,
INFINITY_FLOAT, 3.2f, 0.0f};
greedy_algorithms::findMinimumEdge(INFINITY_FLOAT, graph2);
// Test case with double values
std::cout << "\nTest Case 3 :\n";
std::array<std::array<double, 5>, 5> graph3{
0.0, 10.5, INFINITY_DOUBLE, 6.7, 3.3,
10.5, 0.0, 8.1, 15.4, INFINITY_DOUBLE,
INFINITY_DOUBLE, 8.1, 0.0, INFINITY_DOUBLE, 7.8,
6.7, 15.4, INFINITY_DOUBLE, 0.0, 9.9,
3.3, INFINITY_DOUBLE, 7.8, 9.9, 0.0};
greedy_algorithms::findMinimumEdge(INFINITY_DOUBLE, graph3);
// Test Case with negative weights
std::cout << "\nTest Case 4 :\n";
std::array<std::array<int, 3>, 3> graph_neg{
0, -2, 4,
-2, 0, 3,
4, 3, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, graph_neg);
// Test Case with Self-Loops
std::cout << "\nTest Case 5 :\n";
std::array<std::array<int, 3>, 3> graph_self_loop{
2, 1, INFINITY_INT,
INFINITY_INT, 0, 4,
INFINITY_INT, 4, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, graph_self_loop);
// Test Case with no edges
std::cout << "\nTest Case 6 :\n";
std::array<std::array<int, 4>, 4> no_edges{
0, INFINITY_INT, INFINITY_INT, INFINITY_INT,
INFINITY_INT, 0, INFINITY_INT, INFINITY_INT,
INFINITY_INT, INFINITY_INT, 0, INFINITY_INT,
INFINITY_INT, INFINITY_INT, INFINITY_INT, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, no_edges);
// Test Case with a non-connected graph
std::cout << "\nTest Case 7:\n";
std::array<std::array<int, 4>, 4> partial_graph{
0, 2, INFINITY_INT, 6,
2, 0, 3, INFINITY_INT,
INFINITY_INT, 3, 0, 4,
6, INFINITY_INT, 4, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, partial_graph);
// Test Case with Directed weighted graph. The Krushkal algorithm does not give
// optimal answer
std::cout << "\nTest Case 8:\n";
std::array<std::array<int, 4>, 4> directed_graph{
0, 3, 7, INFINITY_INT, // Vertex 0 has edges to Vertex 1 and Vertex 2
INFINITY_INT, 0, 2, 5, // Vertex 1 has edges to Vertex 2 and Vertex 3
INFINITY_INT, INFINITY_INT, 0, 1, // Vertex 2 has an edge to Vertex 3
INFINITY_INT, INFINITY_INT, INFINITY_INT, 0}; // Vertex 3 has no outgoing edges
greedy_algorithms::findMinimumEdge(INFINITY_INT, directed_graph);
// Test case with wrong input passed
std::cout << "\nTest Case 9:\n";
std::array<std::array<int, 4>, 3> graph9{
0, 5, 5, 5,
5, 0, 5, 5,
5, 5, 5, 5};
greedy_algorithms::findMinimumEdge(INFINITY_INT, graph9);
// Test case with all the same values between every edge
std::cout << "\nTest Case 10:\n";
std::array<std::array<int, 5>, 5> graph10{
0, 5, 5, 5, 5,
5, 0, 5, 5, 5,
5, 5, 0, 5, 5,
5, 5, 5, 0, 5,
5, 5, 5, 5, 0};
greedy_algorithms::findMinimumEdge(INFINITY_INT, graph10);
// Test Case with uint32_t values
std::cout << "\nTest Case 11 :\n";
std::array<std::array<uint32_t, 4>, 4> graph_uint32{
0, 5, INFINITY_UINT32, 9,
5, 0, 2, INFINITY_UINT32,
INFINITY_UINT32, 2, 0, 6,
9, INFINITY_UINT32, 6, 0};
greedy_algorithms::findMinimumEdge(INFINITY_UINT32, graph_uint32);
std::cout << "\nAll tests have successfully passed!\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run Self-test implementation
return 0;
}