The Algorithms logo
The Algorithms
package Maths;

import java.util.ArrayList;

 * Class for circular convolution of two discrete signals using the convolution theorem.
 * @author Ioannis Karavitsis
 * @version 1.0
public class CircularConvolutionFFT {
   * This method pads the signal with zeros until it reaches the new size.
   * @param x The signal to be padded.
   * @param newSize The new size of the signal.
  private static void padding(ArrayList<FFT.Complex> x, int newSize) {
    if (x.size() < newSize) {
      int diff = newSize - x.size();
      for (int i = 0; i < diff; i++) x.add(new FFT.Complex());

   * Discrete circular convolution function. It uses the convolution theorem for discrete signals:
   * convolved = IDFT(DFT(a)*DFT(b)). Then we use the FFT algorithm for faster calculations of the
   * two DFTs and the final IDFT.
   * <p>More info:
   * @param a The first signal.
   * @param b The other signal.
   * @return The convolved signal.
  public static ArrayList<FFT.Complex> fftCircularConvolution(
      ArrayList<FFT.Complex> a, ArrayList<FFT.Complex> b) {
    int convolvedSize =
            a.size(), b.size()); // The two signals must have the same size equal to the bigger one
    padding(a, convolvedSize); // Zero padding the smaller signal
    padding(b, convolvedSize);

    /* Find the FFTs of both signal. Here we use the Bluestein algorithm because we want the FFT to have the same length with the signal and not bigger */
    FFTBluestein.fftBluestein(a, false);
    FFTBluestein.fftBluestein(b, false);
    ArrayList<FFT.Complex> convolved = new ArrayList<>();

    for (int i = 0; i < a.size(); i++) convolved.add(a.get(i).multiply(b.get(i))); // FFT(a)*FFT(b)

    FFTBluestein.fftBluestein(convolved, true); // IFFT

    return convolved;