#### Long Division

d
```//        Given two integers dividend and divisor, divide two integers without using multiplication,
//        division, and mod operator.
//
//        The integer division should truncate toward zero, which means losing its fractional part.
//        For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2. My
//        method used Long Division, here is the source
//        "https://en.wikipedia.org/wiki/Long_division"

package com.thealgorithms.maths;

public final class LongDivision {
private LongDivision() {
}
public static int divide(int dividend, int divisor) {
long new_dividend_1 = dividend;
long new_divisor_1 = divisor;

if (divisor == 0) {
return 0;
}
if (dividend < 0) {
new_dividend_1 = new_dividend_1 * -1;
}
if (divisor < 0) {
new_divisor_1 = new_divisor_1 * -1;
}

if (dividend == 0 || new_dividend_1 < new_divisor_1) {
return 0;
}

String dividend_string = "" + new_dividend_1;
int last_index = 0;

String remainder = "";

for (int i = 0; i < dividend_string.length(); i++) {
String part_v1 = remainder + "" + dividend_string.substring(last_index, i + 1);
long part_1 = Long.parseLong(part_v1);
if (part_1 > new_divisor_1) {
int quotient = 0;
while (part_1 >= new_divisor_1) {
part_1 = part_1 - new_divisor_1;
quotient++;
}
} else if (part_1 == new_divisor_1) {
int quotient = 0;
while (part_1 >= new_divisor_1) {
part_1 = part_1 - new_divisor_1;
quotient++;
}
} else if (part_1 == 0) {
} else if (part_1 < new_divisor_1) {
}
if (!(part_1 == 0)) {
remainder = String.valueOf(part_1);
} else {
remainder = "";
}

last_index++;
}

if ((dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0)) {
try {