#### Selection Sort

m
p
P
S
H
S
A
and 3 more contributors
```def selection_sort(collection: list[int]) -> list[int]:
"""
Sorts a list in ascending order using the selection sort algorithm.

:param collection: A list of integers to be sorted.
:return: The sorted list.

Examples:
>>> selection_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]

>>> selection_sort([])
[]

>>> selection_sort([-2, -5, -45])
[-45, -5, -2]
"""

length = len(collection)
for i in range(length - 1):
min_index = i
for k in range(i + 1, length):
if collection[k] < collection[min_index]:
min_index = k
if min_index != i:
collection[i], collection[min_index] = collection[min_index], collection[i]
return collection

if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
sorted_list = selection_sort(unsorted)
print("Sorted List:", sorted_list)
```

#### Problem Statement

Given an unsorted array of n elements, write a function to sort the array

#### Approach

• select the smallest element from the array
• put it at the beginning of the array
• then select the smallest array from the remaining unsorted list
• append it to the sorted array at the beginning
• keep doing this for every element of the array
• repeat the above process n times

#### Time Complexity

`O(n^2)` Worst case performance

`O(n^2)` Best-case performance

`O(n^2)` Average performance

#### Space Complexity

`O(1)` Worst case

#### Example

``````arr[] = {80, 10, 40, 30}
Indexes: 0   1   2   3

1. Index = 0
Select the minimum number from the array (between index 0-3), ie, 10
2. Swap 10  and 80 (arr[0])
3. The array now is {10, 80, 40, 30}

4. Index = 1
Select the minimum number from the array (between index 1-3), ie, 30
5. Swap 30 and 80 (arr[1])
6. The array now is {10, 30, 40, 80}

7. Index = 2
Select the minimum number from the array (between index 2-3), ie, 40
8. Swap 40 and 40 (arr[2])
9. The array now is {10, 30, 40, 80}

The array is now sorted.
``````

#### Video Explanation

A video explaining the Selection Sort Algorithm