#### Vampire Number

A
```package com.thealgorithms.maths;

import java.util.ArrayList;
import java.util.Collections;

/**
* n number theory, a vampire number (or true vampire number) is a composite
* natural number with an even number of digits, that can be factored into two
* natural numbers each with half as many digits as the original number and not
* both with trailing zeroes, where the two factors contain precisely all the
* digits of the original number, in any order, counting multiplicity. The first
* vampire number is 1260 = 21 × 60. *
*
* <p>
*
* <p>
*/
public final class VampireNumber {
private VampireNumber() {
}

public static void main(String[] args) {
test(10, 1000);
}

static void test(int startValue, int stopValue) {
int countofRes = 1;
StringBuilder res = new StringBuilder();

for (int i = startValue; i <= stopValue; i++) {
for (int j = i; j <= stopValue; j++) {
// System.out.println(i+ " "+ j);
if (isVampireNumber(i, j, true)) {
countofRes++;
res.append("" + countofRes + ": = ( " + i + "," + j + " = " + i * j + ")"
+ "\n");
}
}
}
System.out.println(res);
}

static boolean isVampireNumber(int a, int b, boolean noPseudoVamireNumbers) {
// this is for pseudoVampireNumbers  pseudovampire number need not be of length n/2 digits
// for example 126 = 6 x 21
if (noPseudoVamireNumbers) {
if (a * 10 <= b || b * 10 <= a) {
return false;
}
}

String mulDigits = splitIntoDigits(a * b, 0);
String faktorDigits = splitIntoDigits(a, b);

return mulDigits.equals(faktorDigits);
}

// methode to Split the numbers to Digits
static String splitIntoDigits(int num, int num2) {
StringBuilder res = new StringBuilder();

ArrayList<Integer> digits = new ArrayList<>();
while (num > 0) {
num /= 10;
}
while (num2 > 0) {