The Algorithms logo
The Algorithms
Über unsSpenden

Fibonacci Numbers

I
"""
Calculates the Fibonacci sequence using iteration, recursion, memoization,
and a simplified form of Binet's formula

NOTE 1: the iterative, recursive, memoization functions are more accurate than
the Binet's formula function because the Binet formula function  uses floats

NOTE 2: the Binet's formula function is much more limited in the size of inputs
that it can handle due to the size limitations of Python floats
NOTE 3: the matrix function is the fastest and most memory efficient for large n


See benchmark numbers in __main__ for performance comparisons/
https://en.wikipedia.org/wiki/Fibonacci_number for more information
"""

import functools
from collections.abc import Iterator
from math import sqrt
from time import time

import numpy as np
from numpy import ndarray


def time_func(func, *args, **kwargs):
    """
    Times the execution of a function with parameters
    """
    start = time()
    output = func(*args, **kwargs)
    end = time()
    if int(end - start) > 0:
        print(f"{func.__name__} runtime: {(end - start):0.4f} s")
    else:
        print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms")
    return output


def fib_iterative_yield(n: int) -> Iterator[int]:
    """
    Calculates the first n (1-indexed) Fibonacci numbers using iteration with yield
    >>> list(fib_iterative_yield(0))
    [0]
    >>> tuple(fib_iterative_yield(1))
    (0, 1)
    >>> tuple(fib_iterative_yield(5))
    (0, 1, 1, 2, 3, 5)
    >>> tuple(fib_iterative_yield(10))
    (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55)
    >>> tuple(fib_iterative_yield(-1))
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """
    if n < 0:
        raise ValueError("n is negative")
    a, b = 0, 1
    yield a
    for _ in range(n):
        yield b
        a, b = b, a + b


def fib_iterative(n: int) -> list[int]:
    """
    Calculates the first n (0-indexed) Fibonacci numbers using iteration
    >>> fib_iterative(0)
    [0]
    >>> fib_iterative(1)
    [0, 1]
    >>> fib_iterative(5)
    [0, 1, 1, 2, 3, 5]
    >>> fib_iterative(10)
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
    >>> fib_iterative(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """
    if n < 0:
        raise ValueError("n is negative")
    if n == 0:
        return [0]
    fib = [0, 1]
    for _ in range(n - 1):
        fib.append(fib[-1] + fib[-2])
    return fib


def fib_recursive(n: int) -> list[int]:
    """
    Calculates the first n (0-indexed) Fibonacci numbers using recursion
    >>> fib_iterative(0)
    [0]
    >>> fib_iterative(1)
    [0, 1]
    >>> fib_iterative(5)
    [0, 1, 1, 2, 3, 5]
    >>> fib_iterative(10)
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
    >>> fib_iterative(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """

    def fib_recursive_term(i: int) -> int:
        """
        Calculates the i-th (0-indexed) Fibonacci number using recursion
        >>> fib_recursive_term(0)
        0
        >>> fib_recursive_term(1)
        1
        >>> fib_recursive_term(5)
        5
        >>> fib_recursive_term(10)
        55
        >>> fib_recursive_term(-1)
        Traceback (most recent call last):
            ...
        Exception: n is negative
        """
        if i < 0:
            raise ValueError("n is negative")
        if i < 2:
            return i
        return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)

    if n < 0:
        raise ValueError("n is negative")
    return [fib_recursive_term(i) for i in range(n + 1)]


def fib_recursive_cached(n: int) -> list[int]:
    """
    Calculates the first n (0-indexed) Fibonacci numbers using recursion
    >>> fib_iterative(0)
    [0]
    >>> fib_iterative(1)
    [0, 1]
    >>> fib_iterative(5)
    [0, 1, 1, 2, 3, 5]
    >>> fib_iterative(10)
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
    >>> fib_iterative(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """

    @functools.cache
    def fib_recursive_term(i: int) -> int:
        """
        Calculates the i-th (0-indexed) Fibonacci number using recursion
        """
        if i < 0:
            raise ValueError("n is negative")
        if i < 2:
            return i
        return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)

    if n < 0:
        raise ValueError("n is negative")
    return [fib_recursive_term(i) for i in range(n + 1)]


def fib_memoization(n: int) -> list[int]:
    """
    Calculates the first n (0-indexed) Fibonacci numbers using memoization
    >>> fib_memoization(0)
    [0]
    >>> fib_memoization(1)
    [0, 1]
    >>> fib_memoization(5)
    [0, 1, 1, 2, 3, 5]
    >>> fib_memoization(10)
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
    >>> fib_iterative(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """
    if n < 0:
        raise ValueError("n is negative")
    # Cache must be outside recursuive function
    # other it will reset every time it calls itself.
    cache: dict[int, int] = {0: 0, 1: 1, 2: 1}  # Prefilled cache

    def rec_fn_memoized(num: int) -> int:
        if num in cache:
            return cache[num]

        value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2)
        cache[num] = value
        return value

    return [rec_fn_memoized(i) for i in range(n + 1)]


def fib_binet(n: int) -> list[int]:
    """
    Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
    of Binet's formula:
    https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding

    NOTE 1: this function diverges from fib_iterative at around n = 71, likely
    due to compounding floating-point arithmetic errors

    NOTE 2: this function doesn't accept n >= 1475 because it overflows
    thereafter due to the size limitations of Python floats
    >>> fib_binet(0)
    [0]
    >>> fib_binet(1)
    [0, 1]
    >>> fib_binet(5)
    [0, 1, 1, 2, 3, 5]
    >>> fib_binet(10)
    [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
    >>> fib_binet(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    >>> fib_binet(1475)
    Traceback (most recent call last):
        ...
    ValueError: n is too large
    """
    if n < 0:
        raise ValueError("n is negative")
    if n >= 1475:
        raise ValueError("n is too large")
    sqrt_5 = sqrt(5)
    phi = (1 + sqrt_5) / 2
    return [round(phi**i / sqrt_5) for i in range(n + 1)]


def matrix_pow_np(m: ndarray, power: int) -> ndarray:
    """
    Raises a matrix to the power of 'power' using binary exponentiation.

    Args:
        m: Matrix as a numpy array.
        power: The power to which the matrix is to be raised.

    Returns:
        The matrix raised to the power.

    Raises:
        ValueError: If power is negative.

    >>> m = np.array([[1, 1], [1, 0]], dtype=int)
    >>> matrix_pow_np(m, 0)  # Identity matrix when raised to the power of 0
    array([[1, 0],
           [0, 1]])

    >>> matrix_pow_np(m, 1)  # Same matrix when raised to the power of 1
    array([[1, 1],
           [1, 0]])

    >>> matrix_pow_np(m, 5)
    array([[8, 5],
           [5, 3]])

    >>> matrix_pow_np(m, -1)
    Traceback (most recent call last):
        ...
    ValueError: power is negative
    """
    result = np.array([[1, 0], [0, 1]], dtype=int)  # Identity Matrix
    base = m
    if power < 0:  # Negative power is not allowed
        raise ValueError("power is negative")
    while power:
        if power % 2 == 1:
            result = np.dot(result, base)
        base = np.dot(base, base)
        power //= 2
    return result


def fib_matrix_np(n: int) -> int:
    """
    Calculates the n-th Fibonacci number using matrix exponentiation.
    https://www.nayuki.io/page/fast-fibonacci-algorithms#:~:text=
    Summary:%20The%20two%20fast%20Fibonacci%20algorithms%20are%20matrix

    Args:
        n: Fibonacci sequence index

    Returns:
        The n-th Fibonacci number.

    Raises:
        ValueError: If n is negative.

    >>> fib_matrix_np(0)
    0
    >>> fib_matrix_np(1)
    1
    >>> fib_matrix_np(5)
    5
    >>> fib_matrix_np(10)
    55
    >>> fib_matrix_np(-1)
    Traceback (most recent call last):
        ...
    ValueError: n is negative
    """
    if n < 0:
        raise ValueError("n is negative")
    if n == 0:
        return 0

    m = np.array([[1, 1], [1, 0]], dtype=int)
    result = matrix_pow_np(m, n - 1)
    return int(result[0, 0])


if __name__ == "__main__":
    from doctest import testmod

    testmod()
    # Time on an M1 MacBook Pro -- Fastest to slowest
    num = 30
    time_func(fib_iterative_yield, num)  # 0.0012 ms
    time_func(fib_iterative, num)  # 0.0031 ms
    time_func(fib_binet, num)  # 0.0062 ms
    time_func(fib_memoization, num)  # 0.0100 ms
    time_func(fib_recursive_cached, num)  # 0.0153 ms
    time_func(fib_recursive, num)  # 257.0910 ms
    time_func(fib_matrix_np, num)  # 0.0000 ms
Über diesen Algorithmus

In mathematics, the Fibonacci numbers commonly denoted F(n), form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. The Sequence looks like this:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...]

Applications

Finding N-th member of this sequence would be useful in many Applications:

  • Recently Fibonacci sequence and the golden ratio are of great interest to researchers in many fields of

science including high energy physics, quantum mechanics, Cryptography and Coding.

Steps

  1. Prepare Base Matrice
  2. Calculate the power of this Matrice
  3. Take Corresponding value from Matrix

Example

Find 8-th member of Fibonacci

Step 0

| F(n+1)  F(n)  |
| F(n)    F(n-1)|

Step 1

Calculate matrix^1
| 1 1 |
| 1 0 |

Step 2

Calculate matrix^2
| 2 1 |
| 1 1 |

Step 3

Calculate matrix^4
| 5 3 |
| 3 2 |

Step 4

Calculate matrix^8
| 34 21 |
| 21 13 |

Step 5

F(8)=21

Video URL

Others