The Algorithms logo
The Algorithms
Über unsSpenden

Range In Sorted Array

N
package com.thealgorithms.misc;

public final class RangeInSortedArray {
    private RangeInSortedArray() {
    }

    // Get the 1st and last occurrence index of a number 'key' in a non-decreasing array 'nums'
    // Gives [-1, -1] in case element doesn't exist in array
    public static int[] sortedRange(int[] nums, int key) {
        int[] range = new int[] {-1, -1};
        alteredBinSearchIter(nums, key, 0, nums.length - 1, range, true);
        alteredBinSearchIter(nums, key, 0, nums.length - 1, range, false);
        return range;
    }

    // Recursive altered binary search which searches for leftmost as well as rightmost occurrence
    // of 'key'
    public static void alteredBinSearch(int[] nums, int key, int left, int right, int[] range, boolean goLeft) {
        if (left > right) {
            return;
        }
        int mid = (left + right) >>> 1;
        if (nums[mid] > key) {
            alteredBinSearch(nums, key, left, mid - 1, range, goLeft);
        } else if (nums[mid] < key) {
            alteredBinSearch(nums, key, mid + 1, right, range, goLeft);
        } else {
            if (goLeft) {
                if (mid == 0 || nums[mid - 1] != key) {
                    range[0] = mid;
                } else {
                    alteredBinSearch(nums, key, left, mid - 1, range, goLeft);
                }
            } else {
                if (mid == nums.length - 1 || nums[mid + 1] != key) {
                    range[1] = mid;
                } else {
                    alteredBinSearch(nums, key, mid + 1, right, range, goLeft);
                }
            }
        }
    }

    // Iterative altered binary search which searches for leftmost as well as rightmost occurrence
    // of 'key'
    public static void alteredBinSearchIter(int[] nums, int key, int left, int right, int[] range, boolean goLeft) {
        while (left <= right) {
            final int mid = (left + right) >>> 1;
            if (nums[mid] > key) {
                right = mid - 1;
            } else if (nums[mid] < key) {
                left = mid + 1;
            } else {
                if (goLeft) {
                    if (mid == 0 || nums[mid - 1] != key) {
                        range[0] = mid;
                        return;
                    } else {
                        right = mid - 1;
                    }
                } else {
                    if (mid == nums.length - 1 || nums[mid + 1] != key) {
                        range[1] = mid;
                        return;
                    } else {
                        left = mid + 1;
                    }
                }
            }
        }
    }

    public static int getCountLessThan(int[] nums, int key) {
        return getLessThan(nums, key, 0, nums.length - 1);
    }

    public static int getLessThan(int[] nums, int key, int left, int right) {
        int count = 0;
        while (left <= right) {
            final int mid = (left + right) >>> 1;
            if (nums[mid] > key) {
                right = mid - 1;
            } else if (nums[mid] <= key) {
                count = mid + 1; // At least mid+1 elements exist which are <= key
                left = mid + 1;
            }
        }
        return count;
    }
}