#!/usr/bin/env python3
"""
Pure Python implementations of binary search algorithms
For doctests run the following command:
python3 -m doctest -v binary_search.py
For manual testing run:
python3 binary_search.py
"""
from __future__ import annotations
import bisect
def bisect_left(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
"""
Locates the first element in a sorted array that is larger or equal to a given
value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.bisect_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are < item and all
values in sorted_collection[i:hi] are >= item.
Examples:
>>> bisect_left([0, 5, 7, 10, 15], 0)
0
>>> bisect_left([0, 5, 7, 10, 15], 6)
2
>>> bisect_left([0, 5, 7, 10, 15], 20)
5
>>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_left([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi < 0:
hi = len(sorted_collection)
while lo < hi:
mid = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
lo = mid + 1
else:
hi = mid
return lo
def bisect_right(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
"""
Locates the first element in a sorted array that is larger than a given value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.bisect_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are <= item and
all values in sorted_collection[i:hi] are > item.
Examples:
>>> bisect_right([0, 5, 7, 10, 15], 0)
1
>>> bisect_right([0, 5, 7, 10, 15], 15)
5
>>> bisect_right([0, 5, 7, 10, 15], 6)
2
>>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_right([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi < 0:
hi = len(sorted_collection)
while lo < hi:
mid = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
lo = mid + 1
else:
hi = mid
return lo
def insort_left(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
"""
Inserts a given value into a sorted array before other values with the same value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.insort_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_left(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
True
>>> item is sorted_collection[2]
False
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)
def insort_right(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
"""
Inserts a given value into a sorted array after other values with the same value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.insort_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_right(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
False
>>> item is sorted_collection[2]
True
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)
def binary_search(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of a binary search algorithm in Python
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
left = 0
right = len(sorted_collection) - 1
while left <= right:
midpoint = left + (right - left) // 2
current_item = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
right = midpoint - 1
else:
left = midpoint + 1
return -1
def binary_search_std_lib(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of a binary search algorithm in Python using stdlib
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
index = bisect.bisect_left(sorted_collection, item)
if index != len(sorted_collection) and sorted_collection[index] == item:
return index
return -1
def binary_search_by_recursion(
sorted_collection: list[int], item: int, left: int = 0, right: int = -1
) -> int:
"""Pure implementation of a binary search algorithm in Python by recursion
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4)
0
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4)
4
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4)
1
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4)
-1
"""
if right < 0:
right = len(sorted_collection) - 1
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
if right < left:
return -1
midpoint = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
else:
return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)
def exponential_search(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of an exponential search algorithm in Python
Resources used:
https://en.wikipedia.org/wiki/Exponential_search
Be careful collection must be ascending sorted otherwise, result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
the order of this algorithm is O(lg I) where I is index position of item if exist
Examples:
>>> exponential_search([0, 5, 7, 10, 15], 0)
0
>>> exponential_search([0, 5, 7, 10, 15], 15)
4
>>> exponential_search([0, 5, 7, 10, 15], 5)
1
>>> exponential_search([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
bound = 1
while bound < len(sorted_collection) and sorted_collection[bound] < item:
bound *= 2
left = bound // 2
right = min(bound, len(sorted_collection) - 1)
last_result = binary_search_by_recursion(
sorted_collection=sorted_collection, item=item, left=left, right=right
)
if last_result is None:
return -1
return last_result
searches = ( # Fastest to slowest...
binary_search_std_lib,
binary_search,
exponential_search,
binary_search_by_recursion,
)
if __name__ == "__main__":
import doctest
import timeit
doctest.testmod()
for search in searches:
name = f"{search.__name__:>26}"
print(f"{name}: {search([0, 5, 7, 10, 15], 10) = }") # type: ignore[operator]
print("\nBenchmarks...")
setup = "collection = range(1000)"
for search in searches:
name = search.__name__
print(
f"{name:>26}:",
timeit.timeit(
f"{name}(collection, 500)", setup=setup, number=5_000, globals=globals()
),
)
user_input = input("\nEnter numbers separated by comma: ").strip()
collection = sorted(int(item) for item in user_input.split(","))
target = int(input("Enter a single number to be found in the list: "))
result = binary_search(sorted_collection=collection, item=target)
if result == -1:
print(f"{target} was not found in {collection}.")
else:
print(f"{target} was found at position {result} of {collection}.")
Dada una matriz ordenada de n
elementos, escriba una función para buscar el índice de un elemento determinado (destino).
O(log n)
- En el peor de los casos
O(1)
- En el mejor de los casos (Si el elemento central de la matriz inicial es el elemento de destino)
O(1)
- Para un enfoque iterativo
O(log n)
- Para un enfoque recursivo debido a la pila de llamadas de recursividad
arr = [1,2,3,4,5,6,7]
target = 2
Inicialmente, el elemento en el índice medio es 4, que es mayor que 2. Por lo tanto, buscamos la mitad izquierda de la
matriz, es decir: [1,2,3].
Aquí encontramos el elemento central igual al elemento objetivo, por lo que devolvemos su índice: 1
target = 9
Búsqueda binaria debe devolver -1 dado que 9 no está presente en la matriz
Un vídeo CS50 explicando el algoritmo de búsqueda binaria