The Algorithms logo
The Algorithms
À proposFaire un don

Sequential Minimum Optimization

p
"""
Sequential minimal optimization (SMO) for support vector machines (SVM)

Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
programming (QP) problem that arises during the training of SVMs. It was invented by
John Platt in 1998.

Input:
    0: type: numpy.ndarray.
    1: first column of ndarray must be tags of samples, must be 1 or -1.
    2: rows of ndarray represent samples.

Usage:
    Command:
        python3 sequential_minimum_optimization.py
    Code:
        from sequential_minimum_optimization import SmoSVM, Kernel

        kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
        init_alphas = np.zeros(train.shape[0])
        SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
                     b=0.0, tolerance=0.001)
        SVM.fit()
        predict = SVM.predict(test_samples)

Reference:
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
"""

import os
import sys
import urllib.request

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs, make_circles
from sklearn.preprocessing import StandardScaler

CANCER_DATASET_URL = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/"
    "breast-cancer-wisconsin/wdbc.data"
)


class SmoSVM:
    def __init__(
        self,
        train,
        kernel_func,
        alpha_list=None,
        cost=0.4,
        b=0.0,
        tolerance=0.001,
        auto_norm=True,
    ):
        self._init = True
        self._auto_norm = auto_norm
        self._c = np.float64(cost)
        self._b = np.float64(b)
        self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)

        self.tags = train[:, 0]
        self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
        self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
        self.Kernel = kernel_func

        self._eps = 0.001
        self._all_samples = list(range(self.length))
        self._K_matrix = self._calculate_k_matrix()
        self._error = np.zeros(self.length)
        self._unbound = []

        self.choose_alpha = self._choose_alphas()

    # Calculate alphas using SMO algorithm
    def fit(self):
        k = self._k
        state = None
        while True:
            # 1: Find alpha1, alpha2
            try:
                i1, i2 = self.choose_alpha.send(state)
                state = None
            except StopIteration:
                print("Optimization done!\nEvery sample satisfy the KKT condition!")
                break

            # 2: calculate new alpha2 and new alpha1
            y1, y2 = self.tags[i1], self.tags[i2]
            a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
            e1, e2 = self._e(i1), self._e(i2)
            args = (i1, i2, a1, a2, e1, e2, y1, y2)
            a1_new, a2_new = self._get_new_alpha(*args)
            if not a1_new and not a2_new:
                state = False
                continue
            self.alphas[i1], self.alphas[i2] = a1_new, a2_new

            # 3: update threshold(b)
            b1_new = np.float64(
                -e1
                - y1 * k(i1, i1) * (a1_new - a1)
                - y2 * k(i2, i1) * (a2_new - a2)
                + self._b
            )
            b2_new = np.float64(
                -e2
                - y2 * k(i2, i2) * (a2_new - a2)
                - y1 * k(i1, i2) * (a1_new - a1)
                + self._b
            )
            if 0.0 < a1_new < self._c:
                b = b1_new
            if 0.0 < a2_new < self._c:
                b = b2_new
            if not (np.float64(0) < a2_new < self._c) and not (
                np.float64(0) < a1_new < self._c
            ):
                b = (b1_new + b2_new) / 2.0
            b_old = self._b
            self._b = b

            # 4: update error, here we only calculate the error for non-bound samples
            self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
            for s in self.unbound:
                if s in (i1, i2):
                    continue
                self._error[s] += (
                    y1 * (a1_new - a1) * k(i1, s)
                    + y2 * (a2_new - a2) * k(i2, s)
                    + (self._b - b_old)
                )

            # if i1 or i2 is non-bound, update their error value to zero
            if self._is_unbound(i1):
                self._error[i1] = 0
            if self._is_unbound(i2):
                self._error[i2] = 0

    # Predict test samples
    def predict(self, test_samples, classify=True):
        if test_samples.shape[1] > self.samples.shape[1]:
            raise ValueError(
                "Test samples' feature length does not equal to that of train samples"
            )

        if self._auto_norm:
            test_samples = self._norm(test_samples)

        results = []
        for test_sample in test_samples:
            result = self._predict(test_sample)
            if classify:
                results.append(1 if result > 0 else -1)
            else:
                results.append(result)
        return np.array(results)

    # Check if alpha violates the KKT condition
    def _check_obey_kkt(self, index):
        alphas = self.alphas
        tol = self._tol
        r = self._e(index) * self.tags[index]
        c = self._c

        return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)

    # Get value calculated from kernel function
    def _k(self, i1, i2):
        # for test samples, use kernel function
        if isinstance(i2, np.ndarray):
            return self.Kernel(self.samples[i1], i2)
        # for training samples, kernel values have been saved in matrix
        else:
            return self._K_matrix[i1, i2]

    # Get error for sample
    def _e(self, index):
        """
        Two cases:
            1: Sample[index] is non-bound, fetch error from list: _error
            2: sample[index] is bound, use predicted value minus true value: g(xi) - yi
        """
        # get from error data
        if self._is_unbound(index):
            return self._error[index]
        # get by g(xi) - yi
        else:
            gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
            yi = self.tags[index]
            return gx - yi

    # Calculate kernel matrix of all possible i1, i2, saving time
    def _calculate_k_matrix(self):
        k_matrix = np.zeros([self.length, self.length])
        for i in self._all_samples:
            for j in self._all_samples:
                k_matrix[i, j] = np.float64(
                    self.Kernel(self.samples[i, :], self.samples[j, :])
                )
        return k_matrix

    # Predict tag for test sample
    def _predict(self, sample):
        k = self._k
        predicted_value = (
            np.sum(
                [
                    self.alphas[i1] * self.tags[i1] * k(i1, sample)
                    for i1 in self._all_samples
                ]
            )
            + self._b
        )
        return predicted_value

    # Choose alpha1 and alpha2
    def _choose_alphas(self):
        loci = yield from self._choose_a1()
        if not loci:
            return None
        return loci

    def _choose_a1(self):
        """
        Choose first alpha
        Steps:
            1: First loop over all samples
            2: Second loop over all non-bound samples until no non-bound samples violate
               the KKT condition.
            3: Repeat these two processes until no samples violate the KKT condition
               after the first loop.
        """
        while True:
            all_not_obey = True
            # all sample
            print("Scanning all samples!")
            for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
                all_not_obey = False
                yield from self._choose_a2(i1)

            # non-bound sample
            print("Scanning non-bound samples!")
            while True:
                not_obey = True
                for i1 in [
                    i
                    for i in self._all_samples
                    if self._check_obey_kkt(i) and self._is_unbound(i)
                ]:
                    not_obey = False
                    yield from self._choose_a2(i1)
                if not_obey:
                    print("All non-bound samples satisfy the KKT condition!")
                    break
            if all_not_obey:
                print("All samples satisfy the KKT condition!")
                break
        return False

    def _choose_a2(self, i1):
        """
        Choose the second alpha using a heuristic algorithm
        Steps:
            1: Choose alpha2 that maximizes the step size (|E1 - E2|).
            2: Start in a random point, loop over all non-bound samples till alpha1 and
               alpha2 are optimized.
            3: Start in a random point, loop over all samples till alpha1 and alpha2 are
               optimized.
        """
        self._unbound = [i for i in self._all_samples if self._is_unbound(i)]

        if len(self.unbound) > 0:
            tmp_error = self._error.copy().tolist()
            tmp_error_dict = {
                index: value
                for index, value in enumerate(tmp_error)
                if self._is_unbound(index)
            }
            if self._e(i1) >= 0:
                i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
            else:
                i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
            cmd = yield i1, i2
            if cmd is None:
                return

        rng = np.random.default_rng()
        for i2 in np.roll(self.unbound, rng.choice(self.length)):
            cmd = yield i1, i2
            if cmd is None:
                return

        for i2 in np.roll(self._all_samples, rng.choice(self.length)):
            cmd = yield i1, i2
            if cmd is None:
                return

    # Get the new alpha2 and new alpha1
    def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
        k = self._k
        if i1 == i2:
            return None, None

        # calculate L and H which bound the new alpha2
        s = y1 * y2
        if s == -1:
            l, h = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)  # noqa: E741
        else:
            l, h = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)  # noqa: E741
        if l == h:
            return None, None

        # calculate eta
        k11 = k(i1, i1)
        k22 = k(i2, i2)
        k12 = k(i1, i2)

        # select the new alpha2 which could achieve the minimal objectives
        if (eta := k11 + k22 - 2.0 * k12) > 0.0:
            a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
            # a2_new has a boundary
            if a2_new_unc >= h:
                a2_new = h
            elif a2_new_unc <= l:
                a2_new = l
            else:
                a2_new = a2_new_unc
        else:
            b = self._b
            l1 = a1 + s * (a2 - l)
            h1 = a1 + s * (a2 - h)

            # Method 1
            f1 = y1 * (e1 + b) - a1 * k(i1, i1) - s * a2 * k(i1, i2)
            f2 = y2 * (e2 + b) - a2 * k(i2, i2) - s * a1 * k(i1, i2)
            ol = (
                l1 * f1
                + l * f2
                + 1 / 2 * l1**2 * k(i1, i1)
                + 1 / 2 * l**2 * k(i2, i2)
                + s * l * l1 * k(i1, i2)
            )
            oh = (
                h1 * f1
                + h * f2
                + 1 / 2 * h1**2 * k(i1, i1)
                + 1 / 2 * h**2 * k(i2, i2)
                + s * h * h1 * k(i1, i2)
            )
            """
            Method 2: Use objective function to check which alpha2_new could achieve the
            minimal objectives
            """
            if ol < (oh - self._eps):
                a2_new = l
            elif ol > oh + self._eps:
                a2_new = h
            else:
                a2_new = a2

        # a1_new has a boundary too
        a1_new = a1 + s * (a2 - a2_new)
        if a1_new < 0:
            a2_new += s * a1_new
            a1_new = 0
        if a1_new > self._c:
            a2_new += s * (a1_new - self._c)
            a1_new = self._c

        return a1_new, a2_new

    # Normalize data using min-max method
    def _norm(self, data):
        if self._init:
            self._min = np.min(data, axis=0)
            self._max = np.max(data, axis=0)
            self._init = False
            return (data - self._min) / (self._max - self._min)
        else:
            return (data - self._min) / (self._max - self._min)

    def _is_unbound(self, index):
        return bool(0.0 < self.alphas[index] < self._c)

    def _is_support(self, index):
        return bool(self.alphas[index] > 0)

    @property
    def unbound(self):
        return self._unbound

    @property
    def support(self):
        return [i for i in range(self.length) if self._is_support(i)]

    @property
    def length(self):
        return self.samples.shape[0]


class Kernel:
    def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
        self.degree = np.float64(degree)
        self.coef0 = np.float64(coef0)
        self.gamma = np.float64(gamma)
        self._kernel_name = kernel
        self._kernel = self._get_kernel(kernel_name=kernel)
        self._check()

    def _polynomial(self, v1, v2):
        return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree

    def _linear(self, v1, v2):
        return np.inner(v1, v2) + self.coef0

    def _rbf(self, v1, v2):
        return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))

    def _check(self):
        if self._kernel == self._rbf and self.gamma < 0:
            raise ValueError("gamma value must be non-negative")

    def _get_kernel(self, kernel_name):
        maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
        return maps[kernel_name]

    def __call__(self, v1, v2):
        return self._kernel(v1, v2)

    def __repr__(self):
        return self._kernel_name


def count_time(func):
    def call_func(*args, **kwargs):
        import time

        start_time = time.time()
        func(*args, **kwargs)
        end_time = time.time()
        print(f"SMO algorithm cost {end_time - start_time} seconds")

    return call_func


@count_time
def test_cancer_data():
    print("Hello!\nStart test SVM using the SMO algorithm!")
    # 0: download dataset and load into pandas' dataframe
    if not os.path.exists(r"cancer_data.csv"):
        request = urllib.request.Request(  # noqa: S310
            CANCER_DATASET_URL,
            headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
        )
        response = urllib.request.urlopen(request)  # noqa: S310
        content = response.read().decode("utf-8")
        with open(r"cancer_data.csv", "w") as f:
            f.write(content)

    data = pd.read_csv(
        "cancer_data.csv",
        header=None,
        dtype={0: str},  # Assuming the first column contains string data
    )

    # 1: pre-processing data
    del data[data.columns.tolist()[0]]
    data = data.dropna(axis=0)
    data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
    samples = np.array(data)[:, :]

    # 2: dividing data into train_data data and test_data data
    train_data, test_data = samples[:328, :], samples[328:, :]
    test_tags, test_samples = test_data[:, 0], test_data[:, 1:]

    # 3: choose kernel function, and set initial alphas to zero (optional)
    my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
    al = np.zeros(train_data.shape[0])

    # 4: calculating best alphas using SMO algorithm and predict test_data samples
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        alpha_list=al,
        cost=0.4,
        b=0.0,
        tolerance=0.001,
    )
    mysvm.fit()
    predict = mysvm.predict(test_samples)

    # 5: check accuracy
    score = 0
    test_num = test_tags.shape[0]
    for i in range(test_tags.shape[0]):
        if test_tags[i] == predict[i]:
            score += 1
    print(f"\nAll: {test_num}\nCorrect: {score}\nIncorrect: {test_num - score}")
    print(f"Rough Accuracy: {score / test_tags.shape[0]}")


def test_demonstration():
    # change stdout
    print("\nStarting plot, please wait!")
    sys.stdout = open(os.devnull, "w")

    ax1 = plt.subplot2grid((2, 2), (0, 0))
    ax2 = plt.subplot2grid((2, 2), (0, 1))
    ax3 = plt.subplot2grid((2, 2), (1, 0))
    ax4 = plt.subplot2grid((2, 2), (1, 1))
    ax1.set_title("Linear SVM, cost = 0.1")
    test_linear_kernel(ax1, cost=0.1)
    ax2.set_title("Linear SVM, cost = 500")
    test_linear_kernel(ax2, cost=500)
    ax3.set_title("RBF kernel SVM, cost = 0.1")
    test_rbf_kernel(ax3, cost=0.1)
    ax4.set_title("RBF kernel SVM, cost = 500")
    test_rbf_kernel(ax4, cost=500)

    sys.stdout = sys.__stdout__
    print("Plot done!")


def test_linear_kernel(ax, cost):
    train_x, train_y = make_blobs(
        n_samples=500, centers=2, n_features=2, random_state=1
    )
    train_y[train_y == 0] = -1
    scaler = StandardScaler()
    train_x_scaled = scaler.fit_transform(train_x, train_y)
    train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
    my_kernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        cost=cost,
        tolerance=0.001,
        auto_norm=False,
    )
    mysvm.fit()
    plot_partition_boundary(mysvm, train_data, ax=ax)


def test_rbf_kernel(ax, cost):
    train_x, train_y = make_circles(
        n_samples=500, noise=0.1, factor=0.1, random_state=1
    )
    train_y[train_y == 0] = -1
    scaler = StandardScaler()
    train_x_scaled = scaler.fit_transform(train_x, train_y)
    train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
    my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
    mysvm = SmoSVM(
        train=train_data,
        kernel_func=my_kernel,
        cost=cost,
        tolerance=0.001,
        auto_norm=False,
    )
    mysvm.fit()
    plot_partition_boundary(mysvm, train_data, ax=ax)


def plot_partition_boundary(
    model, train_data, ax, resolution=100, colors=("b", "k", "r")
):
    """
    We cannot get the optimal w of our kernel SVM model, which is different from a
    linear SVM.  For this reason, we generate randomly distributed points with high
    density, and predicted values of these points are calculated using our trained
    model. Then we could use this predicted values to draw contour map, and this contour
    map represents the SVM's partition boundary.
    """
    train_data_x = train_data[:, 1]
    train_data_y = train_data[:, 2]
    train_data_tags = train_data[:, 0]
    xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
    yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
    test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
        resolution * resolution, 2
    )

    test_tags = model.predict(test_samples, classify=False)
    grid = test_tags.reshape((len(xrange), len(yrange)))

    # Plot contour map which represents the partition boundary
    ax.contour(
        xrange,
        yrange,
        np.asmatrix(grid).T,
        levels=(-1, 0, 1),
        linestyles=("--", "-", "--"),
        linewidths=(1, 1, 1),
        colors=colors,
    )
    # Plot all train samples
    ax.scatter(
        train_data_x,
        train_data_y,
        c=train_data_tags,
        cmap=plt.cm.Dark2,
        lw=0,
        alpha=0.5,
    )

    # Plot support vectors
    support = model.support
    ax.scatter(
        train_data_x[support],
        train_data_y[support],
        c=train_data_tags[support],
        cmap=plt.cm.Dark2,
    )


if __name__ == "__main__":
    test_cancer_data()
    test_demonstration()
    plt.show()