using System.Collections.Generic;
using System.Numerics;
namespace Algorithms.Sequences;
/// <summary>
/// <para>
/// Sequence of number of triangles in triangular matchstick arrangement of side n for n>=0.
/// </para>
/// <para>
/// M. E. Larsen, The eternal triangle – a history of a counting problem, College Math. J., 20 (1989), 370-392.
/// https://web.math.ku.dk/~mel/mel.pdf.
/// </para>
/// <para>
/// OEIS: http://oeis.org/A002717.
/// </para>
/// </summary>
public class MatchstickTriangleSequence : ISequence
{
/// <summary>
/// <para>
/// Gets number of triangles contained in an triangular arrangement of matchsticks of side length n.
/// </para>
/// <para>
/// This also counts the subset of smaller triangles contained within the arrangement.
/// </para>
/// <para>
/// Based on the PDF referenced above, the sequence is derived from step 8, using the resulting equation
/// of f(n) = (n(n+2)(2n+1) -(delta)(n)) / 8. Using BigInteger values, we can effectively remove
/// (delta)(n) from the previous by using integer division instead.
/// </para>
/// <para>
/// Examples follow.
/// <pre>
/// .
/// / \ This contains 1 triangle of size 1.
/// .---.
///
/// .
/// / \ This contains 4 triangles of size 1.
/// .---. This contains 1 triangle of size 2.
/// / \ / \ This contains 5 triangles total.
/// .---.---.
///
/// .
/// / \ This contains 9 triangles of size 1.
/// .---. This contains 3 triangles of size 2.
/// / \ / \ This contains 1 triangles of size 3.
/// .---.---.
/// / \ / \ / \ This contains 13 triangles total.
/// .---.---.---.
/// </pre>
/// </para>
/// </summary>
public IEnumerable<BigInteger> Sequence
{
get
{
var index = BigInteger.Zero;
var eight = new BigInteger(8);
while (true)
{
var temp = index * (index + 2) * (index * 2 + 1);
var result = BigInteger.Divide(temp, eight);
yield return result;
index++;
}
}
}
}