package com.thealgorithms.ciphers;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
/**
* The ADFGVX cipher is a fractionating transposition cipher that was used by
* the German Army during World War I. It combines a **Polybius square substitution**
* with a **columnar transposition** to enhance encryption strength.
* <p>
* The name "ADFGVX" refers to the six letters (A, D, F, G, V, X) used as row and
* column labels in the Polybius square. This cipher was designed to secure
* communication and create complex, hard-to-break ciphertexts.
* <p>
* Learn more: <a href="https://en.wikipedia.org/wiki/ADFGVX_cipher">ADFGVX Cipher - Wikipedia</a>.
* <p>
* Example usage:
* <pre>
* ADFGVXCipher cipher = new ADFGVXCipher();
* String encrypted = cipher.encrypt("attack at 1200am", "PRIVACY");
* String decrypted = cipher.decrypt(encrypted, "PRIVACY");
* </pre>
*
* @author bennybebo
*/
public class ADFGVXCipher {
// Constants used in the Polybius square
private static final char[] POLYBIUS_LETTERS = {'A', 'D', 'F', 'G', 'V', 'X'};
private static final char[][] POLYBIUS_SQUARE = {{'N', 'A', '1', 'C', '3', 'H'}, {'8', 'T', 'B', '2', 'O', 'M'}, {'E', '5', 'W', 'R', 'P', 'D'}, {'4', 'F', '6', 'G', '7', 'I'}, {'9', 'J', '0', 'K', 'L', 'Q'}, {'S', 'U', 'V', 'X', 'Y', 'Z'}};
// Maps for fast substitution lookups
private static final Map<String, Character> POLYBIUS_MAP = new HashMap<>();
private static final Map<Character, String> REVERSE_POLYBIUS_MAP = new HashMap<>();
// Static block to initialize the lookup tables from the Polybius square
static {
for (int i = 0; i < POLYBIUS_SQUARE.length; i++) {
for (int j = 0; j < POLYBIUS_SQUARE[i].length; j++) {
String key = "" + POLYBIUS_LETTERS[i] + POLYBIUS_LETTERS[j];
POLYBIUS_MAP.put(key, POLYBIUS_SQUARE[i][j]);
REVERSE_POLYBIUS_MAP.put(POLYBIUS_SQUARE[i][j], key);
}
}
}
/**
* Encrypts a given plaintext using the ADFGVX cipher with the provided keyword.
* Steps:
* 1. Substitute each letter in the plaintext with a pair of ADFGVX letters.
* 2. Perform a columnar transposition on the fractionated text using the keyword.
*
* @param plaintext The message to be encrypted (can contain letters and digits).
* @param key The keyword for columnar transposition.
* @return The encrypted message as ciphertext.
*/
public String encrypt(String plaintext, String key) {
plaintext = plaintext.toUpperCase().replaceAll("[^A-Z0-9]", ""); // Sanitize input
StringBuilder fractionatedText = new StringBuilder();
for (char c : plaintext.toCharArray()) {
fractionatedText.append(REVERSE_POLYBIUS_MAP.get(c));
}
return columnarTransposition(fractionatedText.toString(), key);
}
/**
* Decrypts a given ciphertext using the ADFGVX cipher with the provided keyword.
* Steps:
* 1. Reverse the columnar transposition performed during encryption.
* 2. Substitute each pair of ADFGVX letters with the corresponding plaintext letter.
* The resulting text is the decrypted message.
*
* @param ciphertext The encrypted message.
* @param key The keyword used during encryption.
* @return The decrypted plaintext message.
*/
public String decrypt(String ciphertext, String key) {
String fractionatedText = reverseColumnarTransposition(ciphertext, key);
StringBuilder plaintext = new StringBuilder();
for (int i = 0; i < fractionatedText.length(); i += 2) {
String pair = fractionatedText.substring(i, i + 2);
plaintext.append(POLYBIUS_MAP.get(pair));
}
return plaintext.toString();
}
/**
* Helper method: Performs columnar transposition during encryption
*
* @param text The fractionated text to be transposed
* @param key The keyword for columnar transposition
* @return The transposed text
*/
private String columnarTransposition(String text, String key) {
int numRows = (int) Math.ceil((double) text.length() / key.length());
char[][] table = new char[numRows][key.length()];
for (char[] row : table) { // Fill empty cells with underscores
Arrays.fill(row, '_');
}
// Populate the table row by row
for (int i = 0; i < text.length(); i++) {
table[i / key.length()][i % key.length()] = text.charAt(i);
}
// Read columns based on the alphabetical order of the key
StringBuilder ciphertext = new StringBuilder();
char[] sortedKey = key.toCharArray();
Arrays.sort(sortedKey);
for (char keyChar : sortedKey) {
int column = key.indexOf(keyChar);
for (char[] row : table) {
if (row[column] != '_') {
ciphertext.append(row[column]);
}
}
}
return ciphertext.toString();
}
/**
* Helper method: Reverses the columnar transposition during decryption
*
* @param ciphertext The transposed text to be reversed
* @param key The keyword used during encryption
* @return The reversed text
*/
private String reverseColumnarTransposition(String ciphertext, String key) {
int numRows = (int) Math.ceil((double) ciphertext.length() / key.length());
char[][] table = new char[numRows][key.length()];
char[] sortedKey = key.toCharArray();
Arrays.sort(sortedKey);
int index = 0;
// Populate the table column by column according to the sorted key
for (char keyChar : sortedKey) {
int column = key.indexOf(keyChar);
for (int row = 0; row < numRows; row++) {
if (index < ciphertext.length()) {
table[row][column] = ciphertext.charAt(index++);
} else {
table[row][column] = '_';
}
}
}
// Read the table row by row to reconstruct the fractionated text
StringBuilder fractionatedText = new StringBuilder();
for (char[] row : table) {
for (char cell : row) {
if (cell != '_') {
fractionatedText.append(cell);
}
}
}
return fractionatedText.toString();
}
}