package com.thealgorithms.lineclipping;
import com.thealgorithms.lineclipping.utils.Line;
import com.thealgorithms.lineclipping.utils.Point;
/**
* @author shikarisohan
* @since 10/4/24
* Cohen-Sutherland Line Clipping Algorithm
*
* This algorithm is used to clip a line segment to a rectangular window.
* It assigns a region code to each endpoint of the line segment, and
* then efficiently determines whether the line segment is fully inside,
* fully outside, or partially inside the window.
*
* Reference:
* https://en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland_algorithm
*
* Clipping window boundaries are defined as (xMin, yMin) and (xMax, yMax).
* The algorithm computes the clipped line segment if it's partially or
* fully inside the clipping window.
*/
public class CohenSutherland {
// Region codes for the 9 regions
private static final int INSIDE = 0; // 0000
private static final int LEFT = 1; // 0001
private static final int RIGHT = 2; // 0010
private static final int BOTTOM = 4; // 0100
private static final int TOP = 8; // 1000
// Define the clipping window
double xMin;
double yMin;
double xMax;
double yMax;
public CohenSutherland(double xMin, double yMin, double xMax, double yMax) {
this.xMin = xMin;
this.yMin = yMin;
this.xMax = xMax;
this.yMax = yMax;
}
// Compute the region code for a point (x, y)
private int computeCode(double x, double y) {
int code = INSIDE;
if (x < xMin) // to the left of rectangle
{
code |= LEFT;
} else if (x > xMax) // to the right of rectangle
{
code |= RIGHT;
}
if (y < yMin) // below the rectangle
{
code |= BOTTOM;
} else if (y > yMax) // above the rectangle
{
code |= TOP;
}
return code;
}
// Cohen-Sutherland algorithm to return the clipped line
public Line cohenSutherlandClip(Line line) {
double x1 = line.start.x;
double y1 = line.start.y;
double x2 = line.end.x;
double y2 = line.end.y;
int code1 = computeCode(x1, y1);
int code2 = computeCode(x2, y2);
boolean accept = false;
while (true) {
if ((code1 == 0) && (code2 == 0)) {
// Both points are inside the rectangle
accept = true;
break;
} else if ((code1 & code2) != 0) {
// Both points are outside the rectangle in the same region
break;
} else {
// Some segment of the line is inside the rectangle
double x = 0;
double y = 0;
// Pick an endpoint that is outside the rectangle
int codeOut = (code1 != 0) ? code1 : code2;
// Find the intersection point using the line equation
if ((codeOut & TOP) != 0) {
// Point is above the rectangle
x = x1 + (x2 - x1) * (yMax - y1) / (y2 - y1);
y = yMax;
} else if ((codeOut & BOTTOM) != 0) {
// Point is below the rectangle
x = x1 + (x2 - x1) * (yMin - y1) / (y2 - y1);
y = yMin;
} else if ((codeOut & RIGHT) != 0) {
// Point is to the right of the rectangle
y = y1 + (y2 - y1) * (xMax - x1) / (x2 - x1);
x = xMax;
} else if ((codeOut & LEFT) != 0) {
// Point is to the left of the rectangle
y = y1 + (y2 - y1) * (xMin - x1) / (x2 - x1);
x = xMin;
}
// Replace the point outside the rectangle with the intersection point
if (codeOut == code1) {
x1 = x;
y1 = y;
code1 = computeCode(x1, y1);
} else {
x2 = x;
y2 = y;
code2 = computeCode(x2, y2);
}
}
}
if (accept) {
return new Line(new Point(x1, y1), new Point(x2, y2));
} else {
return null; // The line is fully rejected
}
}
}