/*
dsa.go
description: DSA encryption and decryption including key generation
details: [DSA wiki](https://en.wikipedia.org/wiki/Digital_Signature_Algorithm)
author(s): [ddaniel27](https://github.com/ddaniel27)
*/
package dsa
import (
"crypto/rand"
"io"
"math/big"
)
const (
numMRTests = 64 // Number of Miller-Rabin tests
L = 1024 // Number of bits in p
N = 160 // Number of bits in q
)
type (
// parameters represents the DSA parameters
parameters struct {
P, Q, G *big.Int
}
// dsa represents the DSA
dsa struct {
parameters
pubKey *big.Int // public key (y)
privKey *big.Int // private key (x)
}
)
// New creates a new DSA instance
func New() *dsa {
d := new(dsa)
d.dsaParameterGeneration()
d.keyGen()
return d
}
// Parameter generation for DSA
// 1. FIPS 186-4 specifies that the L and N values must be (1024, 160), (2048, 224), or (3072, 256)
// 2. Choose a N-bit prime q
// 3. Choose a L-bit prime p such that p-1 is a multiple of q
// 4. Choose an integer h randomly from the range [2, p-2]
// 5. Compute g = h^((p-1)/q) mod p
// 6. Return (p, q, g)
func (dsa *dsa) dsaParameterGeneration() {
var err error
p, q, bigInt := new(big.Int), new(big.Int), new(big.Int)
one, g, h := big.NewInt(1), big.NewInt(1), big.NewInt(2)
pBytes := make([]byte, L/8)
// GPLoop is a label for the loop
// We use this loop to change the prime q if we don't find a prime p
GPLoop:
for {
// 2. Choose a N-bit prime q
q, err = rand.Prime(rand.Reader, N)
if err != nil {
panic(err)
}
for i := 0; i < 4*L; i++ {
// 3. Choose a L-bit prime p such that p-1 is a multiple of q
// In this case we generate a random number of L bits
if _, err := io.ReadFull(rand.Reader, pBytes); err != nil {
panic(err)
}
// This are the minimum conditions for p being a possible prime
pBytes[len(pBytes)-1] |= 1 // p is odd
pBytes[0] |= 0x80 // p has the highest bit set
p.SetBytes(pBytes)
// Instead of using (p-1)%q == 0
// We ensure that p-1 is a multiple of q and validates if p is prime
bigInt.Mod(p, q)
bigInt.Sub(bigInt, one)
p.Sub(p, bigInt)
if p.BitLen() < L || !p.ProbablyPrime(numMRTests) { // Check if p is prime and has L bits
continue
}
dsa.P = p
dsa.Q = q
break GPLoop
}
}
// 4. Choose an integer h randomly from the range [2, p-2]. Commonly, h = 2
// 5. Compute g = h^((p-1)/q) mod p. In case g == 1, increment h until g != 1
pm1 := new(big.Int).Sub(p, one)
for g.Cmp(one) == 0 {
g.Exp(h, new(big.Int).Div(pm1, q), p)
h.Add(h, one)
}
dsa.G = g
}
// keyGen is key generation for DSA
// 1. Choose a random integer x from the range [1, q-1]
// 2. Compute y = g^x mod p
func (dsa *dsa) keyGen() {
// 1. Choose a random integer x from the range [1, q-1]
x, err := rand.Int(rand.Reader, new(big.Int).Sub(dsa.Q, big.NewInt(1)))
if err != nil {
panic(err)
}
dsa.privKey = x
// 2. Compute y = g^x mod p
dsa.pubKey = new(big.Int).Exp(dsa.G, x, dsa.P)
}
// Sign is signature generation for DSA
// 1. Choose a random integer k from the range [1, q-1]
// 2. Compute r = (g^k mod p) mod q
// 3. Compute s = (k^-1 * (H(m) + x*r)) mod q
func Sign(m []byte, p, q, g, x *big.Int) (r, s *big.Int) {
// 1. Choose a random integer k from the range [1, q-1]
k, err := rand.Int(rand.Reader, new(big.Int).Sub(q, big.NewInt(1)))
if err != nil {
panic(err)
}
// 2. Compute r = (g^k mod p) mod q
r = new(big.Int).Exp(g, k, p)
r.Mod(r, q)
// 3. Compute s = (k^-1 * (H(m) + x*r)) mod q
h := new(big.Int).SetBytes(m) // This should be the hash of the message
s = new(big.Int).ModInverse(k, q) // k^-1 mod q
s.Mul(
s,
new(big.Int).Add( // (H(m) + x*r)
h,
new(big.Int).Mul(x, r),
),
)
s.Mod(s, q) // mod q
return r, s
}
// Verify is signature verification for DSA
// 1. Compute w = s^-1 mod q
// 2. Compute u1 = (H(m) * w) mod q
// 3. Compute u2 = (r * w) mod q
// 4. Compute v = ((g^u1 * y^u2) mod p) mod q
// 5. If v == r, the signature is valid
func Verify(m []byte, r, s, p, q, g, y *big.Int) bool {
// 1. Compute w = s^-1 mod q
w := new(big.Int).ModInverse(s, q)
// 2. Compute u1 = (H(m) * w) mod q
h := new(big.Int).SetBytes(m) // This should be the hash of the message
u1 := new(big.Int).Mul(h, w)
u1.Mod(u1, q)
// 3. Compute u2 = (r * w) mod q
u2 := new(big.Int).Mul(r, w)
u2.Mod(u2, q)
// 4. Compute v = ((g^u1 * y^u2) mod p) mod q
v := new(big.Int).Exp(g, u1, p)
v.Mul(
v,
new(big.Int).Exp(y, u2, p),
)
v.Mod(v, p)
v.Mod(v, q)
// 5. If v == r, the signature is valid
return v.Cmp(r) == 0
}
// GetPublicKey returns the public key (y)
func (dsa *dsa) GetPublicKey() *big.Int {
return dsa.pubKey
}
// GetParameters returns the DSA parameters (p, q, g)
func (dsa *dsa) GetParameters() parameters {
return dsa.parameters
}
// GetPrivateKey returns the private Key (x)
func (dsa *dsa) GetPrivateKey() *big.Int {
return dsa.privKey
}