Extended Gcd

A
d
## Extended Euclidean algorithm

import std/math


func updateCoefficients(t0, t1, q: int): (int, int) =
  (t1, t0 - q * t1)


func euclidIteration(inA, inB: int): (Natural, int, int) =
  var (a, b) = (inA.abs().Natural, inB.abs().Natural)
  var (x0, x1) = (1, 0)
  var (y0, y1) = (0, 1)
  while b != 0:
    let q = int(a div b)
    (x0, x1) = updateCoefficients(x0, x1, q)
    (y0, y1) = updateCoefficients(y0, y1, q)
    (a, b) = (b, a mod b)

  (a, x0, y0)


func extendedGCD*(a, b: int): tuple[gcd: Natural; x, y: int] =
  ## Implements the
  ## [Extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm).
  ## For given integers `a`, `b` it
  ## computes their [`gcd`](https://en.wikipedia.org/wiki/Greatest_common_divisor)
  ## and integers `x` and `y`, such that
  ## `gcd = a * x + b * y`,
  ## and furthermore:
  ## - if `a != 0`, then `abs(y) <= abs(a div gcd)`,
  ## - if `b != 0`, then `abs(x) <= abs(b div gcd)`.
  let (gcd, x, y) = euclidIteration(a, b)
  (gcd: gcd, x: math.sgn(a) * x, y: math.sgn(b) * y)


when isMainModule:
  import std/[unittest, sequtils, strformat]
  suite "extendedGCD":
    const testCases = [
      (10, 15, 5, -1, 1),
      (-10, -15, 5, 1, -1),
      (32, 64, 32, 1, 0),
      (0, 0, 0, 0, 0),
      (7, 0, 7, 1, 0),
      (-8, 0, 8, -1, 0),
      (48, 60, 12, -1, 1),
      (98, 56, 14, -1, 2),
      (10, -15, 5, -1, -1),
      (997, 12345, 1, -3467, 280),
      (997, 1234567, 1, -456926, 369),
      ].mapIt:
        let tc = (id: fmt"a={it[0]}, b={it[1]}", a: it[0], b: it[1],
            gcd: it[2].Natural, x: it[3], y: it[4])
        if tc.gcd != 0:
          assert tc.a mod int(tc.gcd) == 0
          assert tc.b mod int(tc.gcd) == 0
          if tc.b != 0:
            assert abs(tc.x) <= abs(tc.b div int(tc.gcd))
          else:
            assert abs(tc.x) == 1
            assert tc.y == 0
          if tc.a != 0:
            assert abs(tc.y) <= abs(tc.a div int(tc.gcd))
          else:
            assert abs(tc.y) == 1
            assert tc.x == 0
        else:
          assert tc.a == 0 and tc.b == 0
          assert tc.x == 0 and tc.y == 0
        assert int(tc.gcd) == tc.a * tc.x + tc.b * tc.y
        tc

    for tc in testCases:
      test tc.id:
        checkpoint("returns expected result")
        check extendedGCD(tc.a, tc.b) == (tc.gcd, tc.x, tc.y)
        checkpoint("returns expected result when first argument negated")
        check extendedGCD(-tc.a, tc.b) == (tc.gcd, -tc.x, tc.y)
        checkpoint("returns expected result when second argument negated")
        check extendedGCD(tc.a, -tc.b) == (tc.gcd, tc.x, -tc.y)
        checkpoint("returns expected result when both arguments negated")
        check extendedGCD(-tc.a, -tc.b) == (tc.gcd, -tc.x, -tc.y)
        checkpoint("is symmetric")
        check extendedGCD(tc.b, tc.a) == (tc.gcd, tc.y, tc.x)