/**
* \file
* \brief Find extrema of a univariate real function in a given interval using
* [golden section search
* algorithm](https://en.wikipedia.org/wiki/Golden-section_search).
*
* \see brent_method_extrema.cpp
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#define _USE_MATH_DEFINES //< required for MS Visual C++
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#define EPSILON 1e-7 ///< solution accuracy limit
/**
* @brief Get the minima of a function in the given interval. To get the maxima,
* simply negate the function. The golden ratio used here is:\f[
* k=\frac{3-\sqrt{5}}{2} \approx 0.381966\ldots\f]
*
* @param f function to get minima for
* @param lim_a lower limit of search window
* @param lim_b upper limit of search window
* @return local minima found in the interval
*/
double get_minima(const std::function<double(double)> &f, double lim_a,
double lim_b) {
uint32_t iters = 0;
double c, d;
double prev_mean, mean = std::numeric_limits<double>::infinity();
// golden ratio value
const double M_GOLDEN_RATIO = (1.f + std::sqrt(5.f)) / 2.f;
// ensure that lim_a < lim_b
if (lim_a > lim_b) {
std::swap(lim_a, lim_b);
} else if (std::abs(lim_a - lim_b) <= EPSILON) {
std::cerr << "Search range must be greater than " << EPSILON << "\n";
return lim_a;
}
do {
prev_mean = mean;
// compute the section ratio width
double ratio = (lim_b - lim_a) / M_GOLDEN_RATIO;
c = lim_b - ratio; // right-side section start
d = lim_a + ratio; // left-side section end
if (f(c) < f(d)) {
// select left section
lim_b = d;
} else {
// selct right section
lim_a = c;
}
mean = (lim_a + lim_b) / 2.f;
iters++;
// continue till the interval width is greater than sqrt(system epsilon)
} while (std::abs(lim_a - lim_b) > EPSILON);
std::cout << " (iters: " << iters << ") ";
return prev_mean;
}
/**
* @brief Test function to find minima for the function
* \f$f(x)= (x-2)^2\f$
* in the interval \f$[1,5]\f$
* \n Expected result = 2
*/
void test1() {
// define the function to minimize as a lambda function
std::function<double(double)> f1 = [](double x) {
return (x - 2) * (x - 2);
};
std::cout << "Test 1.... ";
double minima = get_minima(f1, 1, 5);
std::cout << minima << "...";
assert(std::abs(minima - 2) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find *maxima* for the function
* \f$f(x)= x^{\frac{1}{x}}\f$
* in the interval \f$[-2,10]\f$
* \n Expected result: \f$e\approx 2.71828182845904509\f$
*/
void test2() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) {
return -std::pow(x, 1.f / x);
};
std::cout << "Test 2.... ";
double minima = get_minima(func, -2, 10);
std::cout << minima << " (" << M_E << ")...";
assert(std::abs(minima - M_E) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find *maxima* for the function
* \f$f(x)= \cos x\f$
* in the interval \f$[0,12]\f$
* \n Expected result: \f$\pi\approx 3.14159265358979312\f$
*/
void test3() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) { return std::cos(x); };
std::cout << "Test 3.... ";
double minima = get_minima(func, -4, 12);
std::cout << minima << " (" << M_PI << ")...";
assert(std::abs(minima - M_PI) < EPSILON);
std::cout << "passed\n";
}
/** Main function */
int main() {
std::cout.precision(9);
std::cout << "Computations performed with machine epsilon: " << EPSILON
<< "\n";
test1();
test2();
test3();
return 0;
}