package com.thealgorithms.maths;
import java.math.BigInteger;
/**
* This class provides an implementation of the Karatsuba multiplication algorithm.
*
* <p>
* Karatsuba multiplication is a divide-and-conquer algorithm for multiplying two large
* numbers. It is faster than the classical multiplication algorithm and reduces the
* time complexity to O(n^1.585) by breaking the multiplication of two n-digit numbers
* into three multiplications of n/2-digit numbers.
* </p>
*
* <p>
* The main idea of the Karatsuba algorithm is based on the following observation:
* </p>
*
* <pre>
* Let x and y be two numbers:
* x = a * 10^m + b
* y = c * 10^m + d
*
* Then, the product of x and y can be expressed as:
* x * y = (a * c) * 10^(2*m) + ((a * d) + (b * c)) * 10^m + (b * d)
* </pre>
*
* The Karatsuba algorithm calculates this more efficiently by reducing the number of
* multiplications from four to three by using the identity:
*
* <pre>
* (a + b)(c + d) = ac + ad + bc + bd
* </pre>
*
* <p>
* The recursion continues until the numbers are small enough to multiply directly using
* the traditional method.
* </p>
*/
public final class KaratsubaMultiplication {
/**
* Private constructor to hide the implicit public constructor
*/
private KaratsubaMultiplication() {
}
/**
* Multiplies two large numbers using the Karatsuba algorithm.
*
* <p>
* This method recursively splits the numbers into smaller parts until they are
* small enough to be multiplied directly using the traditional method.
* </p>
*
* @param x The first large number to be multiplied (BigInteger).
* @param y The second large number to be multiplied (BigInteger).
* @return The product of the two numbers (BigInteger).
*/
public static BigInteger karatsuba(BigInteger x, BigInteger y) {
// Base case: when numbers are small enough, use direct multiplication
// If the number is 4 bits or smaller, switch to the classical method
if (x.bitLength() <= 4 || y.bitLength() <= 4) {
return x.multiply(y);
}
// Find the maximum bit length of the two numbers
int n = Math.max(x.bitLength(), y.bitLength());
// Split the numbers in the middle
int m = n / 2;
// High and low parts of the first number x (x = a * 10^m + b)
BigInteger high1 = x.shiftRight(m); // a = x / 2^m (higher part)
BigInteger low1 = x.subtract(high1.shiftLeft(m)); // b = x - a * 2^m (lower part)
// High and low parts of the second number y (y = c * 10^m + d)
BigInteger high2 = y.shiftRight(m); // c = y / 2^m (higher part)
BigInteger low2 = y.subtract(high2.shiftLeft(m)); // d = y - c * 2^m (lower part)
// Recursively calculate three products
BigInteger z0 = karatsuba(low1, low2); // z0 = b * d (low1 * low2)
BigInteger z1 = karatsuba(low1.add(high1), low2.add(high2)); // z1 = (a + b) * (c + d)
BigInteger z2 = karatsuba(high1, high2); // z2 = a * c (high1 * high2)
// Combine the results using Karatsuba's formula
// z0 + ((z1 - z2 - z0) << m) + (z2 << 2m)
return z2
.shiftLeft(2 * m) // z2 * 10^(2*m)
.add(z1.subtract(z2).subtract(z0).shiftLeft(m)) // (z1 - z2 - z0) * 10^m
.add(z0); // z0
}
}