/**
* @file
* @brief Algorithm to find largest x such that p^x divides n! (factorial) using
* Legendre's Formula.
* @details Given an integer n and a prime number p, the task is to find the
* largest x such that p^x (p raised to power x) divides n! (factorial). This
* will be done using Legendre's formula: x = [n/(p^1)] + [n/(p^2)] + [n/(p^3)]
* + \ldots + 1
* @see more on
* https://math.stackexchange.com/questions/141196/highest-power-of-a-prime-p-dividing-n
* @author [uday6670](https://github.com/uday6670)
*/
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for std::cin and std::cout
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @brief Function to calculate largest power
* @param n number
* @param p prime number
* @returns largest power
*/
uint64_t largestPower(uint32_t n, const uint16_t& p) {
// Initialize result
int x = 0;
// Calculate result
while (n) {
n /= p;
x += n;
}
return x;
}
} // namespace math
/**
* @brief Function for testing largestPower function.
* test cases and assert statement.
* @returns `void`
*/
static void test() {
uint8_t test_case_1 = math::largestPower(5, 2);
assert(test_case_1 == 3);
std::cout << "Test 1 Passed!" << std::endl;
uint16_t test_case_2 = math::largestPower(10, 3);
assert(test_case_2 == 4);
std::cout << "Test 2 Passed!" << std::endl;
uint32_t test_case_3 = math::largestPower(25, 5);
assert(test_case_3 == 6);
std::cout << "Test 3 Passed!" << std::endl;
uint32_t test_case_4 = math::largestPower(27, 2);
assert(test_case_4 == 23);
std::cout << "Test 4 Passed!" << std::endl;
uint16_t test_case_5 = math::largestPower(7, 3);
assert(test_case_5 == 2);
std::cout << "Test 5 Passed!" << std::endl;
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // execute the tests
return 0;
}