package com.thealgorithms.lineclipping;
import com.thealgorithms.lineclipping.utils.Line;
import com.thealgorithms.lineclipping.utils.Point;
/**
* @author shikarisohan
* @since 10/5/24
*
* * The Liang-Barsky line clipping algorithm is an efficient algorithm for
* * line clipping against a rectangular window. It is based on the parametric
* * equation of a line and checks the intersections of the line with the
* * window boundaries. This algorithm calculates the intersection points,
* * if any, and returns the clipped line that lies inside the window.
* *
* * Reference:
* * https://en.wikipedia.org/wiki/Liang%E2%80%93Barsky_algorithm
*
* Clipping window boundaries are defined as (xMin, yMin) and (xMax, yMax).
* The algorithm computes the clipped line segment if it's partially or
* fully inside the clipping window.
*/
public class LiangBarsky {
// Define the clipping window
double xMin;
double xMax;
double yMin;
double yMax;
public LiangBarsky(double xMin, double yMin, double xMax, double yMax) {
this.xMin = xMin;
this.yMin = yMin;
this.xMax = xMax;
this.yMax = yMax;
}
// Liang-Barsky algorithm to return the clipped line
public Line liangBarskyClip(Line line) {
double dx = line.end.x - line.start.x;
double dy = line.end.y - line.start.y;
double[] p = {-dx, dx, -dy, dy};
double[] q = {line.start.x - xMin, xMax - line.start.x, line.start.y - yMin, yMax - line.start.y};
double[] resultT = clipLine(p, q);
if (resultT == null) {
return null; // Line is outside the clipping window
}
return calculateClippedLine(line, resultT[0], resultT[1], dx, dy);
}
// clip the line by adjusting t0 and t1 for each edge
private double[] clipLine(double[] p, double[] q) {
double t0 = 0.0;
double t1 = 1.0;
for (int i = 0; i < 4; i++) {
double t = q[i] / p[i];
if (p[i] == 0 && q[i] < 0) {
return null; // Line is outside the boundary
} else if (p[i] < 0) {
if (t > t1) {
return null;
} // Line is outside
if (t > t0) {
t0 = t;
} // Update t0
} else if (p[i] > 0) {
if (t < t0) {
return null;
} // Line is outside
if (t < t1) {
t1 = t;
} // Update t1
}
}
return new double[] {t0, t1}; // Return valid t0 and t1
}
// calculate the clipped line based on t0 and t1
private Line calculateClippedLine(Line line, double t0, double t1, double dx, double dy) {
double clippedX1 = line.start.x + t0 * dx;
double clippedY1 = line.start.y + t0 * dy;
double clippedX2 = line.start.x + t1 * dx;
double clippedY2 = line.start.y + t1 * dy;
return new Line(new Point(clippedX1, clippedY1), new Point(clippedX2, clippedY2));
}
}