package com.thealgorithms.dynamicprogramming;
import java.util.Arrays;
/*
Given an array of non-negative integers , partition the array in two subset that
difference in sum of elements for both subset minimum.
Return the minimum difference in sum of these subsets you can achieve.
Input: array[] = {1, 6, 11, 4}
Output: 0
Explanation:
Subset1 = {1, 4, 6}, sum of Subset1 = 11
Subset2 = {11}, sum of Subset2 = 11
Input: array[] = {36, 7, 46, 40}
Output: 23
Explanation:
Subset1 = {7, 46} ; sum of Subset1 = 53
Subset2 = {36, 40} ; sum of Subset2 = 76
*/
public final class MinimumSumPartition {
private MinimumSumPartition() {
}
private static void throwIfInvalidInput(final int[] array) {
if (Arrays.stream(array).anyMatch(a -> a < 0)) {
throw new IllegalArgumentException("Input array should not contain negative number(s).");
}
}
public static int minimumSumPartition(final int[] array) {
throwIfInvalidInput(array);
int sum = Arrays.stream(array).sum();
boolean[] dp = new boolean[sum / 2 + 1];
dp[0] = true; // Base case , don't select any element from array
// Find the closest sum of subset array that we can achieve which is closest to half of sum of full array
int closestPartitionSum = 0;
for (int i = 0; i < array.length; i++) {
for (int j = sum / 2; j > 0; j--) {
if (array[i] <= j) {
dp[j] = dp[j] || dp[j - array[i]];
}
if (dp[j]) {
closestPartitionSum = Math.max(closestPartitionSum, j);
}
}
}
/*
Difference in sum = Big partition sum - Small partition sum
= ( Total sum - Small partition sum) - Small partition sum
*/
return sum - (2 * closestPartitionSum);
}
}