/**
* @file
* @brief C++ Program to find the modular inverse using [Fermat's Little
* Theorem](https://en.wikipedia.org/wiki/Fermat%27s_little_theorem)
*
* Fermat's Little Theorem state that \f[ϕ(m) = m-1\f]
* where \f$m\f$ is a prime number.
* \f{eqnarray*}{
* a \cdot x &≡& 1 \;\text{mod}\; m\\
* x &≡& a^{-1} \;\text{mod}\; m
* \f}
* Using Euler's theorem we can modify the equation.
*\f[
* a^{ϕ(m)} ≡ 1 \;\text{mod}\; m
* \f]
* (Where '^' denotes the exponent operator)
*
* Here 'ϕ' is Euler's Totient Function. For modular inverse existence 'a' and
* 'm' must be relatively primes numbers. To apply Fermat's Little Theorem is
* necessary that 'm' must be a prime number. Generally in many competitive
* programming competitions 'm' is either 1000000007 (1e9+7) or 998244353.
*
* We considered m as large prime (1e9+7).
* \f$a^{ϕ(m)} ≡ 1 \;\text{mod}\; m\f$ (Using Euler's Theorem)
* \f$ϕ(m) = m-1\f$ using Fermat's Little Theorem.
* \f$a^{m-1} ≡ 1 \;\text{mod}\; m\f$
* Now multiplying both side by \f$a^{-1}\f$.
* \f{eqnarray*}{
* a^{m-1} \cdot a^{-1} &≡& a^{-1} \;\text{mod}\; m\\
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m
* \f}
*
* We will find the exponent using binary exponentiation such that the
* algorithm works in \f$O(\log n)\f$ time.
*
* Examples: -
* * a = 3 and m = 7
* * \f$a^{-1} \;\text{mod}\; m\f$ is equivalent to
* \f$a^{m-2} \;\text{mod}\; m\f$
* * \f$3^5 \;\text{mod}\; 7 = 243 \;\text{mod}\; 7 = 5\f$
* <br/>Hence, \f$3^{-1} \;\text{mod}\; 7 = 5\f$
* or \f$3 \times 5 \;\text{mod}\; 7 = 1 \;\text{mod}\; 7\f$
* (as \f$a\times a^{-1} = 1\f$)
*/
#include <cassert> /// for assert
#include <cstdint> /// for std::int64_t
#include <iostream> /// for IO implementations
/**
* @namespace math
* @brief Maths algorithms.
*/
namespace math {
/**
* @namespace modular_inverse_fermat
* @brief Calculate modular inverse using Fermat's Little Theorem.
*/
namespace modular_inverse_fermat {
/**
* @brief Calculate exponent with modulo using binary exponentiation in \f$O(\log b)\f$ time.
* @param a The base
* @param b The exponent
* @param m The modulo
* @return The result of \f$a^{b} % m\f$
*/
std::int64_t binExpo(std::int64_t a, std::int64_t b, std::int64_t m) {
a %= m;
std::int64_t res = 1;
while (b > 0) {
if (b % 2 != 0) {
res = res * a % m;
}
a = a * a % m;
// Dividing b by 2 is similar to right shift by 1 bit
b >>= 1;
}
return res;
}
/**
* @brief Check if an integer is a prime number in \f$O(\sqrt{m})\f$ time.
* @param m An intger to check for primality
* @return true if the number is prime
* @return false if the number is not prime
*/
bool isPrime(std::int64_t m) {
if (m <= 1) {
return false;
}
for (std::int64_t i = 2; i * i <= m; i++) {
if (m % i == 0) {
return false;
}
}
return true;
}
/**
* @brief calculates the modular inverse.
* @param a Integer value for the base
* @param m Integer value for modulo
* @return The result that is the modular inverse of a modulo m
*/
std::int64_t modular_inverse(std::int64_t a, std::int64_t m) {
while (a < 0) {
a += m;
}
// Check for invalid cases
if (!isPrime(m) || a == 0) {
return -1; // Invalid input
}
return binExpo(a, m - 2, m); // Fermat's Little Theorem
}
} // namespace modular_inverse_fermat
} // namespace math
/**
* @brief Self-test implementation
* @return void
*/
static void test() {
assert(math::modular_inverse_fermat::modular_inverse(0, 97) == -1);
assert(math::modular_inverse_fermat::modular_inverse(15, -2) == -1);
assert(math::modular_inverse_fermat::modular_inverse(3, 10) == -1);
assert(math::modular_inverse_fermat::modular_inverse(3, 7) == 5);
assert(math::modular_inverse_fermat::modular_inverse(1, 101) == 1);
assert(math::modular_inverse_fermat::modular_inverse(-1337, 285179) == 165519);
assert(math::modular_inverse_fermat::modular_inverse(123456789, 998244353) == 25170271);
assert(math::modular_inverse_fermat::modular_inverse(-9876543210, 1000000007) == 784794281);
}
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
test(); // run self-test implementation
return 0;
}