from sklearn.neural_network import MLPClassifier
X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]]
y = [0, 1, 0, 0]
clf = MLPClassifier(
solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1
)
clf.fit(X, y)
test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
Y = clf.predict(test)
def wrapper(y):
"""
>>> [int(x) for x in wrapper(Y)]
[0, 0, 1]
"""
return list(y)
if __name__ == "__main__":
import doctest
doctest.testmod()