/**
* @file
* @brief This program aims at calculating [nCr modulo
* p](https://cp-algorithms.com/combinatorics/binomial-coefficients.html).
* @details nCr is defined as n! / (r! * (n-r)!) where n! represents factorial
* of n. In many cases, the value of nCr is too large to fit in a 64 bit
* integer. Hence, in competitive programming, there are many problems or
* subproblems to compute nCr modulo p where p is a given number.
* @author [Kaustubh Damania](https://github.com/KaustubhDamania)
*/
#include <cassert> /// for assert
#include <iostream> /// for std::cout
#include <vector> /// for std::vector
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace ncr_modulo_p
* @brief Functions for [nCr modulo
* p](https://cp-algorithms.com/combinatorics/binomial-coefficients.html)
* implementation.
*/
namespace ncr_modulo_p {
/**
* @namespace utils
* @brief this namespace contains the definitions of the functions called from
* the class math::ncr_modulo_p::NCRModuloP
*/
namespace utils {
/**
* @brief finds the values x and y such that a*x + b*y = gcd(a,b)
*
* @param[in] a the first input of the gcd
* @param[in] a the second input of the gcd
* @param[out] x the Bézout coefficient of a
* @param[out] y the Bézout coefficient of b
* @return the gcd of a and b
*/
int64_t gcdExtended(const int64_t& a, const int64_t& b, int64_t& x,
int64_t& y) {
if (a == 0) {
x = 0;
y = 1;
return b;
}
int64_t x1 = 0, y1 = 0;
const int64_t gcd = gcdExtended(b % a, a, x1, y1);
x = y1 - (b / a) * x1;
y = x1;
return gcd;
}
/** Find modular inverse of a modulo m i.e. a number x such that (a*x)%m = 1
*
* @param[in] a the number for which the modular inverse is queried
* @param[in] m the modulus
* @return the inverce of a modulo m, if it exists, -1 otherwise
*/
int64_t modInverse(const int64_t& a, const int64_t& m) {
int64_t x = 0, y = 0;
const int64_t g = gcdExtended(a, m, x, y);
if (g != 1) { // modular inverse doesn't exist
return -1;
} else {
return ((x + m) % m);
}
}
} // namespace utils
/**
* @brief Class which contains all methods required for calculating nCr mod p
*/
class NCRModuloP {
private:
const int64_t p = 0; /// the p from (nCr % p)
const std::vector<int64_t>
fac; /// stores precomputed factorial(i) % p value
/**
* @brief computes the array of values of factorials reduced modulo mod
* @param max_arg_val argument of the last factorial stored in the result
* @param mod value of the divisor used to reduce factorials
* @return vector storing factorials of the numbers 0, ..., max_arg_val
* reduced modulo mod
*/
static std::vector<int64_t> computeFactorialsMod(const int64_t& max_arg_val,
const int64_t& mod) {
auto res = std::vector<int64_t>(max_arg_val + 1);
res[0] = 1;
for (int64_t i = 1; i <= max_arg_val; i++) {
res[i] = (res[i - 1] * i) % mod;
}
return res;
}
public:
/**
* @brief constructs an NCRModuloP object allowing to compute (nCr)%p for
* inputs from 0 to size
*/
NCRModuloP(const int64_t& size, const int64_t& p)
: p(p), fac(computeFactorialsMod(size, p)) {}
/**
* @brief computes nCr % p
* @param[in] n the number of objects to be chosen
* @param[in] r the number of objects to choose from
* @return the value nCr % p
*/
int64_t ncr(const int64_t& n, const int64_t& r) const {
// Base cases
if (r > n) {
return 0;
}
if (r == 1) {
return n % p;
}
if (r == 0 || r == n) {
return 1;
}
// fac is a global array with fac[r] = (r! % p)
const auto denominator = (fac[r] * fac[n - r]) % p;
const auto denominator_inv = utils::modInverse(denominator, p);
if (denominator_inv < 0) { // modular inverse doesn't exist
return -1;
}
return (fac[n] * denominator_inv) % p;
}
};
} // namespace ncr_modulo_p
} // namespace math
/**
* @brief tests math::ncr_modulo_p::NCRModuloP
*/
static void tests() {
struct TestCase {
const int64_t size;
const int64_t p;
const int64_t n;
const int64_t r;
const int64_t expected;
TestCase(const int64_t size, const int64_t p, const int64_t n,
const int64_t r, const int64_t expected)
: size(size), p(p), n(n), r(r), expected(expected) {}
};
const std::vector<TestCase> test_cases = {
TestCase(60000, 1000000007, 52323, 26161, 224944353),
TestCase(20, 5, 6, 2, 30 % 5),
TestCase(100, 29, 7, 3, 35 % 29),
TestCase(1000, 13, 10, 3, 120 % 13),
TestCase(20, 17, 1, 10, 0),
TestCase(45, 19, 23, 1, 23 % 19),
TestCase(45, 19, 23, 0, 1),
TestCase(45, 19, 23, 23, 1),
TestCase(20, 9, 10, 2, -1)};
for (const auto& tc : test_cases) {
assert(math::ncr_modulo_p::NCRModuloP(tc.size, tc.p).ncr(tc.n, tc.r) ==
tc.expected);
}
std::cout << "\n\nAll tests have successfully passed!\n";
}
/**
* @brief example showing the usage of the math::ncr_modulo_p::NCRModuloP class
*/
void example() {
const int64_t size = 1e6 + 1;
const int64_t p = 1e9 + 7;
// the ncrObj contains the precomputed values of factorials modulo p for
// values from 0 to size
const auto ncrObj = math::ncr_modulo_p::NCRModuloP(size, p);
// having the ncrObj we can efficiently query the values of (n C r)%p
// note that time of the computation does not depend on size
for (int i = 0; i <= 7; i++) {
std::cout << 6 << "C" << i << " mod " << p << " = " << ncrObj.ncr(6, i)
<< "\n";
}
}
int main() {
tests();
example();
return 0;
}