package com.thealgorithms.dynamicprogramming;
/**
* The NewManShanksPrime class provides a method to determine whether the nth
* New Man Shanks prime matches an expected answer.
*
* <p>This is based on the New Man Shanks prime sequence defined by the recurrence
* relation:</p>
*
* <pre>
* a(n) = 2 * a(n-1) + a(n-2) for n >= 2
* a(0) = 1
* a(1) = 1
* </pre>
*
* <p>For more information on New Man Shanks primes, please refer to the
* <a href="https://en.wikipedia.org/wiki/Newman%E2%80%93Shanks%E2%80%93Williams_prime">
* Wikipedia article</a>.</p>
*
* <p>Note: The class is designed to be non-instantiable.</p>
*
* @author <a href="https://github.com/siddhant2002">Siddhant Swarup Mallick</a>
*/
public final class NewManShanksPrime {
private NewManShanksPrime() {
}
/**
* Calculates the nth New Man Shanks prime and checks if it equals the
* expected answer.
*
* @param n the index of the New Man Shanks prime to calculate (0-based).
* @param expectedAnswer the expected value of the nth New Man Shanks prime.
* @return true if the calculated nth New Man Shanks prime matches the
* expected answer; false otherwise.
*/
public static boolean nthManShanksPrime(int n, int expectedAnswer) {
int[] a = new int[n + 1];
a[0] = 1;
a[1] = 1;
for (int i = 2; i <= n; i++) {
a[i] = 2 * a[i - 1] + a[i - 2];
}
return a[n] == expectedAnswer;
}
}