package com.thealgorithms.dynamicprogramming;
/**
* Provides functionality to solve the Palindrome Partitioning II problem, which involves finding
* the minimum number of partitions needed to divide a given string into palindromic substrings.
*
* <p>
* The problem is solved using dynamic programming. The approach involves checking all possible
* substrings and determining whether they are palindromes. The minimum number of cuts required
* for palindrome partitioning is computed in a bottom-up manner.
* </p>
*
* <p>
* Example:
* <ul>
* <li>Input: "nitik" => Output: 2 (Partitioning: "n | iti | k")</li>
* <li>Input: "ababbbabbababa" => Output: 3 (Partitioning: "aba | b | bbabb | ababa")</li>
* </ul>
* </p>
*
* @see <a href="https://leetcode.com/problems/palindrome-partitioning-ii/">Palindrome Partitioning II</a>
* @see <a href="https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/">Palindrome Partitioning (GeeksforGeeks)</a>
*/
public final class PalindromicPartitioning {
private PalindromicPartitioning() {
}
public static int minimalPartitions(String word) {
int len = word.length();
/* We Make two arrays to create a bottom-up solution.
minCuts[i] = Minimum number of cuts needed for palindrome partitioning of substring
word[0..i] isPalindrome[i][j] = true if substring str[i..j] is palindrome Base Condition:
C[i] is 0 if P[0][i]= true
*/
int[] minCuts = new int[len];
boolean[][] isPalindrome = new boolean[len][len];
int i;
int j;
int subLen; // different looping variables
// Every substring of length 1 is a palindrome
for (i = 0; i < len; i++) {
isPalindrome[i][i] = true;
}
/* subLen is substring length. Build the solution in bottom up manner by considering all
* substrings of length starting from 2 to n. */
for (subLen = 2; subLen <= len; subLen++) {
// For substring of length subLen, set different possible starting indexes
for (i = 0; i < len - subLen + 1; i++) {
j = i + subLen - 1; // Ending index
// If subLen is 2, then we just need to
// compare two characters. Else need to
// check two corner characters and value
// of P[i+1][j-1]
if (subLen == 2) {
isPalindrome[i][j] = (word.charAt(i) == word.charAt(j));
} else {
isPalindrome[i][j] = (word.charAt(i) == word.charAt(j)) && isPalindrome[i + 1][j - 1];
}
}
}
// We find the minimum for each index
for (i = 0; i < len; i++) {
if (isPalindrome[0][i]) {
minCuts[i] = 0;
} else {
minCuts[i] = Integer.MAX_VALUE;
for (j = 0; j < i; j++) {
if (isPalindrome[j + 1][i] && 1 + minCuts[j] < minCuts[i]) {
minCuts[i] = 1 + minCuts[j];
}
}
}
}
// Return the min cut value for complete
// string. i.e., str[0..n-1]
return minCuts[len - 1];
}
}