package com.thealgorithms.maths;
/**
* This class represents a complex number which has real and imaginary part
*/
class ComplexNumber {
Double real;
Double imaginary;
ComplexNumber(double real, double imaginary) {
this.real = real;
this.imaginary = imaginary;
}
ComplexNumber(double real) {
this.real = real;
this.imaginary = null;
}
}
/**
* Quadratic Equation Formula is used to find
* the roots of a quadratic equation of the form ax^2 + bx + c = 0
*
* @see <a href="https://en.wikipedia.org/wiki/Quadratic_equation">Quadratic Equation</a>
*/
public class QuadraticEquationSolver {
/**
* Function takes in the coefficients of the quadratic equation
*
* @param a is the coefficient of x^2
* @param b is the coefficient of x
* @param c is the constant
* @return roots of the equation which are ComplexNumber type
*/
public ComplexNumber[] solveEquation(double a, double b, double c) {
double discriminant = b * b - 4 * a * c;
// if discriminant is positive, roots will be different
if (discriminant > 0) {
return new ComplexNumber[] {new ComplexNumber((-b + Math.sqrt(discriminant)) / (2 * a)), new ComplexNumber((-b - Math.sqrt(discriminant)) / (2 * a))};
}
// if discriminant is zero, roots will be same
if (discriminant == 0) {
return new ComplexNumber[] {new ComplexNumber((-b) / (2 * a))};
}
// if discriminant is negative, roots will have imaginary parts
if (discriminant < 0) {
double realPart = -b / (2 * a);
double imaginaryPart = Math.sqrt(-discriminant) / (2 * a);
return new ComplexNumber[] {new ComplexNumber(realPart, imaginaryPart), new ComplexNumber(realPart, -imaginaryPart)};
}
// return no roots
return new ComplexNumber[] {};
}
}