/**
* Given a two dimensional matrix, find its row echelon form.
*
* For more info: https://en.wikipedia.org/wiki/Row_echelon_form
*
* @param {number[[]]} matrix - Two dimensional array of rational numbers.
* @returns {number[[]]} - Two dimensional array of rational numbers (row echelon form).
*
* @example
* const matrix = [
* [2,3,4,5,7],
* [9,8,4,0,9],
* [5,7,4,3,9],
* [3,4,0,2,1]
* ]
*
* const result = rowEchelon(matrix)
*
* // The function returns the corresponding row echelon form:
* // result:
* // [
* // [1, 1.5, 2, 2.5, 3.5],
* // [0, 1, 2.54545, 4.09091, 4.09091],
* // [0, 0, 1, 1.57692, 1.36539],
* // [0, 0, 0, 1, -0.25]
* // ]
*/
// Set a tolerance value for floating-point comparisons
const tolerance = 0.000001
// Check if all the rows have same length of elements
const isMatrixValid = (matrix) => {
let numRows = matrix.length
let numCols = matrix[0].length
for (let i = 0; i < numRows; i++) {
if (numCols !== matrix[i].length) {
return false
}
}
// Check for input other than a 2D matrix
if (
!Array.isArray(matrix) ||
matrix.length === 0 ||
!Array.isArray(matrix[0])
) {
return false
}
return true
}
const checkNonZero = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
// Checks if the current element is not very near to zero.
if (!isTolerant(0, matrix[i][currentCol], tolerance)) {
return true
}
}
return false
}
const swapRows = (currentRow, withRow, matrix) => {
let numCols = matrix[0].length
let tempValue = 0
for (let j = 0; j < numCols; j++) {
tempValue = matrix[currentRow][j]
matrix[currentRow][j] = matrix[withRow][j]
matrix[withRow][j] = tempValue
}
}
// Select a pivot element in the current column to facilitate row operations.
// Pivot element is the first non-zero element found from the current row
// down to the last row.
const selectPivot = (currentRow, currentCol, matrix) => {
let numRows = matrix.length
for (let i = currentRow; i < numRows; i++) {
if (matrix[i][currentCol] !== 0) {
swapRows(currentRow, i, matrix)
return
}
}
}
// Multiply each element of the given row with a factor.
const scalarMultiplication = (currentRow, factor, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[currentRow][j] *= factor
}
}
// Subtract one row from another row
const subtractRow = (currentRow, fromRow, matrix) => {
let numCols = matrix[0].length
for (let j = 0; j < numCols; j++) {
matrix[fromRow][j] -= matrix[currentRow][j]
}
}
// Check if two numbers are equal within a given tolerance
const isTolerant = (a, b, tolerance) => {
const absoluteDifference = Math.abs(a - b)
return absoluteDifference <= tolerance
}
const rowEchelon = (matrix) => {
// Check if the input matrix is valid; if not, throw an error.
if (!isMatrixValid(matrix)) {
throw new Error('Input is not a valid 2D matrix.')
}
let numRows = matrix.length
let numCols = matrix[0].length
let result = matrix
// Iterate through the rows (i) and columns (j) of the matrix.
for (let i = 0, j = 0; i < numRows && j < numCols; ) {
// If the current column has all zero elements below the current row,
// move to the next column.
if (!checkNonZero(i, j, result)) {
j++
continue
}
// Select a pivot element and normalize the current row.
selectPivot(i, j, result)
let factor = 1 / result[i][j]
scalarMultiplication(i, factor, result)
// Make elements below the pivot element zero by performing
// row operations on subsequent rows.
for (let x = i + 1; x < numRows; x++) {
factor = result[x][j]
if (isTolerant(0, factor, tolerance)) {
continue
}
scalarMultiplication(i, factor, result)
subtractRow(i, x, result)
factor = 1 / factor
scalarMultiplication(i, factor, result)
}
i++
}
return result
}
export { rowEchelon }