package com.thealgorithms.dynamicprogramming;
/*
The Sum of Subset problem determines whether a subset of elements from a
given array sums up to a specific target value.
*/
public final class SubsetSumSpaceOptimized {
private SubsetSumSpaceOptimized() {
}
/**
* This method checks whether the subset of an array
* contains a given sum or not. This is an space
* optimized solution using 1D boolean array
* Time Complexity: O(n * sum), Space complexity: O(sum)
*
* @param arr An array containing integers
* @param sum The target sum of the subset
* @return True or False
*/
public static boolean isSubsetSum(int[] arr, int sum) {
int n = arr.length;
// Declare the boolean array with size sum + 1
boolean[] dp = new boolean[sum + 1];
// Initialize the first element as true
dp[0] = true;
// Find the subset sum using 1D array
for (int i = 0; i < n; i++) {
for (int j = sum; j >= arr[i]; j--) {
dp[j] = dp[j] || dp[j - arr[i]];
}
}
return dp[sum];
}
}