/**
* @file
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
*
* @details
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each
* item. The goal is to maximize the total value without exceeding the given
* knapsack capacity. Unlike the 0/1 knapsack, where each item can be taken only
* once, in this variation, any item can be picked any number of times as long
* as the total weight stays within the knapsack's capacity.
*
* Given a set of N items, each with a weight and a value, represented by the
* arrays `wt` and `val` respectively, and a knapsack with a weight limit W, the
* task is to fill the knapsack to maximize the total value.
*
* @note weight and value of items is greater than zero
*
* ### Algorithm
* The approach uses dynamic programming to build a solution iteratively.
* A 2D array is used for memoization to store intermediate results, allowing
* the function to avoid redundant calculations.
*
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
* @see dynamic_programming/0_1_knapsack.cpp
*/
#include <cassert> // For using assert function to validate test cases
#include <cstdint> // For fixed-width integer types like std::uint16_t
#include <iostream> // Standard input-output stream
#include <vector> // Standard library for using dynamic arrays (vectors)
/**
* @namespace dynamic_programming
* @brief Namespace for dynamic programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace Knapsack
* @brief Implementation of unbounded 0-1 knapsack problem
*/
namespace unbounded_knapsack {
/**
* @brief Recursive function to calculate the maximum value obtainable using
* an unbounded knapsack approach.
*
* @param i Current index in the value and weight vectors.
* @param W Remaining capacity of the knapsack.
* @param val Vector of values corresponding to the items.
* @note "val" data type can be changed according to the size of the input.
* @param wt Vector of weights corresponding to the items.
* @note "wt" data type can be changed according to the size of the input.
* @param dp 2D vector for memoization to avoid redundant calculations.
* @return The maximum value that can be obtained for the given index and
* capacity.
*/
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
const std::vector<std::uint16_t>& val,
const std::vector<std::uint16_t>& wt,
std::vector<std::vector<int>>& dp) {
if (i == 0) {
if (wt[0] <= W) {
return (W / wt[0]) *
val[0]; // Take as many of the first item as possible
} else {
return 0; // Can't take the first item
}
}
if (dp[i][W] != -1)
return dp[i][W]; // Return result if available
int nottake =
KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
int take = 0;
if (W >= wt[i]) {
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt,
dp); // Value taking item i
}
return dp[i][W] =
std::max(take, nottake); // Store and return the maximum value
}
/**
* @brief Wrapper function to initiate the unbounded knapsack calculation.
*
* @param N Number of items.
* @param W Maximum weight capacity of the knapsack.
* @param val Vector of values corresponding to the items.
* @param wt Vector of weights corresponding to the items.
* @return The maximum value that can be obtained for the given capacity.
*/
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
const std::vector<std::uint16_t>& val,
const std::vector<std::uint16_t>& wt) {
if (N == 0)
return 0; // Expect 0 since no items
std::vector<std::vector<int>> dp(
N, std::vector<int>(W + 1, -1)); // Initialize memoization table
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
}
} // namespace unbounded_knapsack
} // namespace dynamic_programming
/**
* @brief self test implementation
* @return void
*/
static void tests() {
// Test Case 1
std::uint16_t N1 = 4; // Number of items
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N1, W1, val1, wt1) == 48);
std::cout << "Maximum Knapsack value "
<< dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N1, W1, val1, wt1)
<< std::endl;
// Test Case 2
std::uint16_t N2 = 3; // Number of items
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N2, W2, val2, wt2) == 0);
std::cout << "Maximum Knapsack value "
<< dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N2, W2, val2, wt2)
<< std::endl;
// Test Case 3
std::uint16_t N3 = 3; // Number of items
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
std::vector<std::uint16_t> val3 = {5, 11, 13}; // Values of the items
std::uint16_t W3 = 27; // Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N3, W3, val3, wt3) == 27);
std::cout << "Maximum Knapsack value "
<< dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N3, W3, val3, wt3)
<< std::endl;
// Test Case 4
std::uint16_t N4 = 0; // Number of items
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
std::vector<std::uint16_t> val4 = {}; // Values of the items
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
assert(dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N4, W4, val4, wt4) == 0);
std::cout << "Maximum Knapsack value for empty arrays: "
<< dynamic_programming::unbounded_knapsack::unboundedKnapsack(
N4, W4, val4, wt4)
<< std::endl;
std::cout << "All test cases passed!" << std::endl;
}
/**
* @brief main function
* @return 0 on successful exit
*/
int main() {
tests(); // Run self test implementation
return 0;
}