/**
* @file
* @brief [DSU (Disjoint
* sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
* @details
* It is a very powerful data structure that keeps track of different
* clusters(sets) of elements, these sets are disjoint(doesnot have a common
* element). Disjoint sets uses cases : for finding connected components in a
* graph, used in Kruskal's algorithm for finding Minimum Spanning tree.
* Operations that can be performed:
* 1) UnionSet(i,j): add(element i and j to the set)
* 2) findSet(i): returns the representative of the set to which i belogngs to.
* 3) get_max(i),get_min(i) : returns the maximum and minimum
* Below is the class-based approach which uses the heuristic of path
* compression. Using path compression in findSet(i),we are able to get to the
* representative of i in O(1) time.
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
* @see dsu_union_rank.cpp
*/
#include <cassert> /// for assert
#include <cstdint>
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
using std::cout;
using std::endl;
using std::vector;
/**
* @brief Disjoint sets union data structure, class based representation.
* @param n number of elements
*/
class dsu {
private:
vector<uint64_t> p; ///< keeps track of the parent of ith element
vector<uint64_t> depth; ///< tracks the depth(rank) of i in the tree
vector<uint64_t> setSize; ///< size of each chunk(set)
vector<uint64_t> maxElement; ///< maximum of each set to which i belongs to
vector<uint64_t> minElement; ///< minimum of each set to which i belongs to
public:
/**
* @brief contructor for initialising all data members.
* @param n number of elements
*/
explicit dsu(uint64_t n) {
p.assign(n, 0);
/// initially, all of them are their own parents
for (uint64_t i = 0; i < n; i++) {
p[i] = i;
}
/// initially all have depth are equals to zero
depth.assign(n, 0);
maxElement.assign(n, 0);
minElement.assign(n, 0);
for (uint64_t i = 0; i < n; i++) {
depth[i] = 0;
maxElement[i] = i;
minElement[i] = i;
}
setSize.assign(n, 0);
/// initially set size will be equals to one
for (uint64_t i = 0; i < n; i++) {
setSize[i] = 1;
}
}
/**
* @brief Method to find the representative of the set to which i belongs
* to, T(n) = O(1)
* @param i element of some set
* @returns representative of the set to which i belongs to.
*/
uint64_t findSet(uint64_t i) {
/// using path compression
if (p[i] == i) {
return i;
}
return (p[i] = findSet(p[i]));
}
/**
* @brief Method that combines two disjoint sets to which i and j belongs to
* and make a single set having a common representative.
* @param i element of some set
* @param j element of some set
* @returns void
*/
void UnionSet(uint64_t i, uint64_t j) {
/// check if both belongs to the same set or not
if (isSame(i, j)) {
return;
}
// we find the representative of the i and j
uint64_t x = findSet(i);
uint64_t y = findSet(j);
/// always keeping the min as x
/// shallow tree
if (depth[x] > depth[y]) {
std::swap(x, y);
}
/// making the shallower root's parent the deeper root
p[x] = y;
/// if same depth, then increase one's depth
if (depth[x] == depth[y]) {
depth[y]++;
}
/// total size of the resultant set
setSize[y] += setSize[x];
/// changing the maximum elements
maxElement[y] = std::max(maxElement[x], maxElement[y]);
minElement[y] = std::min(minElement[x], minElement[y]);
}
/**
* @brief A utility function which check whether i and j belongs to
* same set or not
* @param i element of some set
* @param j element of some set
* @returns `true` if element `i` and `j` ARE in the same set
* @returns `false` if element `i` and `j` are NOT in same set
*/
bool isSame(uint64_t i, uint64_t j) {
if (findSet(i) == findSet(j)) {
return true;
}
return false;
}
/**
* @brief prints the minimum, maximum and size of the set to which i belongs
* to
* @param i element of some set
* @returns void
*/
vector<uint64_t> get(uint64_t i) {
vector<uint64_t> ans;
ans.push_back(get_min(i));
ans.push_back(get_max(i));
ans.push_back(size(i));
return ans;
}
/**
* @brief A utility function that returns the size of the set to which i
* belongs to
* @param i element of some set
* @returns size of the set to which i belongs to
*/
uint64_t size(uint64_t i) { return setSize[findSet(i)]; }
/**
* @brief A utility function that returns the max element of the set to
* which i belongs to
* @param i element of some set
* @returns maximum of the set to which i belongs to
*/
uint64_t get_max(uint64_t i) { return maxElement[findSet(i)]; }
/**
* @brief A utility function that returns the min element of the set to
* which i belongs to
* @param i element of some set
* @returns minimum of the set to which i belongs to
*/
uint64_t get_min(uint64_t i) { return minElement[findSet(i)]; }
};
/**
* @brief Self-test implementations, 1st test
* @returns void
*/
static void test1() {
// the minimum, maximum, and size of the set
uint64_t n = 10; ///< number of items
dsu d(n + 1); ///< object of class disjoint sets
// set 1
d.UnionSet(1, 2); // performs union operation on 1 and 2
d.UnionSet(1, 4); // performs union operation on 1 and 4
vector<uint64_t> ans = {1, 4, 3};
for (uint64_t i = 0; i < ans.size(); i++) {
assert(d.get(4).at(i) == ans[i]); // makes sure algorithm works fine
}
cout << "1st test passed!" << endl;
}
/**
* @brief Self-implementations, 2nd test
* @returns void
*/
static void test2() {
// the minimum, maximum, and size of the set
uint64_t n = 10; ///< number of items
dsu d(n + 1); ///< object of class disjoint sets
// set 1
d.UnionSet(3, 5);
d.UnionSet(5, 6);
d.UnionSet(5, 7);
vector<uint64_t> ans = {3, 7, 4};
for (uint64_t i = 0; i < ans.size(); i++) {
assert(d.get(3).at(i) == ans[i]); // makes sure algorithm works fine
}
cout << "2nd test passed!" << endl;
}
/**
* @brief Main function
* @returns 0 on exit
* */
int main() {
uint64_t n = 10; ///< number of items
dsu d(n + 1); ///< object of class disjoint sets
test1(); // run 1st test case
test2(); // run 2nd test case
return 0;
}