/**
* @file duval.cpp
* @brief Implementation of [Duval's algorithm](https://en.wikipedia.org/wiki/Lyndon_word).
*
* @details
* Duval's algorithm is an algorithm to find the lexicographically smallest
* rotation of a string. It is based on the concept of Lyndon words.
* Lyndon words are defined as the lexicographically smallest string in a
* rotation equivalence class. A rotation equivalence class is a set of strings
* that can be obtained by rotating a string. For example, the rotation
* equivalence class of "abc" is {"abc", "bca", "cab"}. The lexicographically
* smallest string in this class is "abc".
*
* Duval's algorithm works by iterating over the string and finding the
* smallest rotation of the string that is a Lyndon word. This is done by
* comparing the string with its suffixes and finding the smallest suffix that
* is lexicographically smaller than the string. This suffix is then added to
* the result and the process is repeated with the remaining string.
* The algorithm has a time complexity of O(n) where n is the length of the
* string.
*
* @note While Lyndon words are described in the context of strings,
* Duval's algorithm can be used to find the lexicographically smallest cyclic
* shift of any sequence of comparable elements.
*
* @author [Amine Ghoussaini](https://github.com/aminegh20)
*/
#include <array> /// for std::array
#include <cassert> /// for assert
#include <cstddef> /// for std::size_t
#include <deque> /// for std::deque
#include <iostream> /// for std::cout and std::endl
#include <string> /// for std::string
#include <vector> /// for std::vector
/**
* @brief string manipulation algorithms
* @namespace
*/
namespace string {
/**
* @brief Find the lexicographically smallest cyclic shift of a sequence.
* @tparam T type of the sequence
* @param s the sequence
* @returns the 0-indexed position of the least cyclic shift of the sequence
*/
template <typename T>
size_t duval(const T& s) {
size_t n = s.size();
size_t i = 0, ans = 0;
while (i < n) {
ans = i;
size_t j = i + 1, k = i;
while (j < (n + n) && s[j % n] >= s[k % n]) {
if (s[k % n] < s[j % n]) {
k = i;
} else {
k++;
}
j++;
}
while (i <= k) {
i += j - k;
}
}
return ans;
// returns 0-indexed position of the least cyclic shift
}
} // namespace string
/**
* @brief self test implementation
* returns void
*/
static void test() {
using namespace string;
// Test 1
std::string s1 = "abcab";
assert(duval(s1) == 3);
// Test 2
std::string s2 = "011100";
assert(duval(s2) == 4);
// Test 3
std::vector<int> v = {5, 2, 1, 3, 4};
assert(duval(v) == 2);
// Test 4
std::array<int, 5> a = {1, 2, 3, 4, 5};
assert(duval(a) == 0);
// Test 5
std::deque<char> d = {'a', 'z', 'c', 'a', 'b'};
assert(duval(d) == 3);
// Test 6
std::string s3;
assert(duval(s3) == 0);
// Test 7
std::vector<int> v2 = {5, 2, 1, 3, -4};
assert(duval(v2) == 4);
std::cout << "All tests passed!" << std::endl;
}
/**
* @brief main function
* @returns 0 on exit
*/
int main() {
test(); // run self test implementations
return 0;
}