/**
* @file
*
* @brief
* Dynamic [Stack](https://en.wikipedia.org/wiki/Stack_(abstract_data_type)),
* just like Dynamic Array, is a stack data structure whose the length or
* capacity (maximum number of elements that can be stored) increases or
* decreases in real time based on the operations (like insertion or deletion)
* performed on it.
*
* In this implementation, functions such as PUSH, POP, PEEK, show_capacity,
* isempty, and stack_size are coded to implement dynamic stack.
*
* @author [SahilK-027](https://github.com/SahilK-027)
*
*/
#include <assert.h> /// to verify assumptions made by the program and print a diagnostic message if this assumption is false.
#include <inttypes.h> /// to provide a set of integer types with universally consistent definitions that are operating system-independent
#include <stdio.h> /// for IO operations
#include <stdlib.h> /// for including functions involving memory allocation such as `malloc`
/**
* @brief DArrayStack Structure of stack.
*/
typedef struct DArrayStack
{
int capacity, top; ///< to store capacity and top of the stack
int *arrPtr; ///< array pointer
} DArrayStack;
/**
* @brief Create a Stack object
*
* @param cap Capacity of stack
* @return DArrayStack* Newly created stack object pointer
*/
DArrayStack *create_stack(int cap)
{
DArrayStack *ptr;
ptr = (DArrayStack *)malloc(sizeof(DArrayStack));
ptr->capacity = cap;
ptr->top = -1;
ptr->arrPtr = (int *)malloc(sizeof(int) * cap);
printf("\nStack of capacity %d is successfully created.\n", ptr->capacity);
return (ptr);
}
/**
* @brief As this is stack implementation using dynamic array this function will
* expand the size of the stack by twice as soon as the stack is full.
*
* @param ptr Stack pointer
* @param cap Capacity of stack
* @return DArrayStack*: Modified stack
*/
DArrayStack *double_array(DArrayStack *ptr, int cap)
{
int newCap = 2 * cap;
int *temp;
temp = (int *)malloc(sizeof(int) * newCap);
for (int i = 0; i < (ptr->top) + 1; i++)
{
temp[i] = ptr->arrPtr[i];
}
free(ptr->arrPtr);
ptr->arrPtr = temp;
ptr->capacity = newCap;
return ptr;
}
/**
* @brief As this is stack implementation using dynamic array this function will
* shrink the size of stack by twice as soon as the stack's capacity and size
* has significant difference.
*
* @param ptr Stack pointer
* @param cap Capacity of stack
* @return DArrayStack*: Modified stack
*/
DArrayStack *shrink_array(DArrayStack *ptr, int cap)
{
int newCap = cap / 2;
int *temp;
temp = (int *)malloc(sizeof(int) * newCap);
for (int i = 0; i < (ptr->top) + 1; i++)
{
temp[i] = ptr->arrPtr[i];
}
free(ptr->arrPtr);
ptr->arrPtr = temp;
ptr->capacity = newCap;
return ptr;
}
/**
* @brief The push function pushes the element onto the stack.
*
* @param ptr Stack pointer
* @param data Value to be pushed onto stack
* @return int Position of top pointer
*/
int push(DArrayStack *ptr, int data)
{
if (ptr->top == (ptr->capacity) - 1)
{
ptr = double_array(ptr, ptr->capacity);
ptr->top++;
ptr->arrPtr[ptr->top] = data;
}
else
{
ptr->top++;
ptr->arrPtr[ptr->top] = data;
}
printf("Successfully pushed : %d\n", data);
return ptr->top;
}
/**
* @brief The pop function to pop an element from the stack.
*
* @param ptr Stack pointer
* @return int Popped value
*/
int pop(DArrayStack *ptr)
{
if (ptr->top == -1)
{
printf("Stack is empty UNDERFLOW \n");
return -1;
}
int ele = ptr->arrPtr[ptr->top];
ptr->arrPtr[ptr->top] = 0;
ptr->top = (ptr->top - 1);
if ((ptr->capacity) % 2 == 0)
{
if (ptr->top <= (ptr->capacity / 2) - 1)
{
ptr = shrink_array(ptr, ptr->capacity);
}
}
printf("Successfully popped: %d\n", ele);
return ele;
}
/**
* @brief To retrieve or fetch the first element of the Stack or the element
* present at the top of the Stack.
*
* @param ptr Stack pointer
* @return int Top of the stack
*/
int peek(DArrayStack *ptr)
{
if (ptr->top == -1)
{
printf("Stack is empty UNDERFLOW \n");
return -1;
}
return ptr->arrPtr[ptr->top];
}
/**
* @brief To display the current capacity of the stack.
*
* @param ptr Stack pointer
* @return int Current capacity of the stack
*/
int show_capacity(DArrayStack *ptr) { return ptr->capacity; }
/**
* @brief The function is used to check whether the stack is empty or not and
* return true or false accordingly.
*
* @param ptr Stack pointer
* @return int returns 1 -> true OR returns 0 -> false
*/
int isempty(DArrayStack *ptr)
{
if (ptr->top == -1)
{
return 1;
}
return 0;
}
/**
* @brief Used to get the size of the Stack or the number of elements present in
* the Stack.
*
* @param ptr Stack pointer
* @return int size of stack
*/
int stack_size(DArrayStack *ptr) { return ptr->top + 1; }
/**
* @brief Self-test implementations
* @returns void
*/
static void test()
{
DArrayStack *NewStack;
int capacity = 1;
NewStack = create_stack(capacity);
uint64_t arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
printf("\nTesting Empty stack: ");
assert(stack_size(NewStack) == 0);
assert(isempty(NewStack) == 1);
printf("Size of an empty stack is %d\n", stack_size(NewStack));
printf("\nTesting PUSH operation:\n");
for (int i = 0; i < 12; ++i)
{
int topVal = push(NewStack, arr[i]);
printf("Size: %d, Capacity: %d\n\n", stack_size(NewStack),
show_capacity(NewStack));
assert(topVal == i);
assert(peek(NewStack) == arr[i]);
assert(stack_size(NewStack) == i + 1);
assert(isempty(NewStack) == 0);
}
printf("\nTesting POP operation:\n");
for (int i = 11; i > -1; --i)
{
peek(NewStack);
assert(peek(NewStack) == arr[i]);
int ele = pop(NewStack);
assert(ele == arr[i]);
assert(stack_size(NewStack) == i);
}
printf("\nTesting Empty stack size: ");
assert(stack_size(NewStack) == 0);
assert(isempty(NewStack) == 1);
printf("Size of an empty stack is %d\n", stack_size(NewStack));
printf("\nTesting POP operation on empty stack: ");
assert(pop(NewStack) == -1);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main()
{
test(); // run self-test implementations
return 0;
}