package com.thealgorithms.datastructures.graphs;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* This class implements Johnson's algorithm for finding all-pairs shortest paths in a weighted,
* directed graph that may contain negative edge weights.
*
* Johnson's algorithm works by using the Bellman-Ford algorithm to compute a transformation of the
* input graph that removes all negative weights, allowing Dijkstra's algorithm to be used for
* efficient shortest path computations.
*
* Time Complexity: O(V^2 * log(V) + V*E)
* Space Complexity: O(V^2)
*
* Where V is the number of vertices and E is the number of edges in the graph.
*
* For more information, please visit {@link https://en.wikipedia.org/wiki/Johnson%27s_algorithm}
*/
public final class JohnsonsAlgorithm {
private static final double INF = Double.POSITIVE_INFINITY;
private JohnsonsAlgorithm() {
}
/**
* Executes Johnson's algorithm on the given graph.
* Steps:
* 1. Add a new vertex to the graph and run Bellman-Ford to compute modified weights
* 2. t the graph using the modified weights
* 3. Run Dijkstra's algorithm for each vertex to compute the shortest paths
* The final result is a 2D array of shortest distances between all pairs of vertices.
*
* @param graph The input graph represented as an adjacency matrix.
* @return A 2D array representing the shortest distances between all pairs of vertices.
*/
public static double[][] johnsonAlgorithm(double[][] graph) {
int numVertices = graph.length;
double[][] edges = convertToEdgeList(graph);
double[] modifiedWeights = bellmanFord(edges, numVertices);
double[][] reweightedGraph = reweightGraph(graph, modifiedWeights);
double[][] shortestDistances = new double[numVertices][numVertices];
for (int source = 0; source < numVertices; source++) {
shortestDistances[source] = dijkstra(reweightedGraph, source, modifiedWeights);
}
return shortestDistances;
}
/**
* Converts the adjacency matrix representation of the graph to an edge list.
*
* @param graph The input graph as an adjacency matrix.
* @return An array of edges, where each edge is represented as [from, to, weight].
*/
public static double[][] convertToEdgeList(double[][] graph) {
int numVertices = graph.length;
List<double[]> edgeList = new ArrayList<>();
for (int i = 0; i < numVertices; i++) {
for (int j = 0; j < numVertices; j++) {
if (i != j && !Double.isInfinite(graph[i][j])) {
// Only add edges that are not self-loops and have a finite weight
edgeList.add(new double[] {i, j, graph[i][j]});
}
}
}
return edgeList.toArray(new double[0][]);
}
/**
* Implements the Bellman-Ford algorithm to compute the shortest paths from a new vertex
* to all other vertices. This is used to calculate the weight function h(v) for reweighting.
*
* @param edges The edge list of the graph.
* @param numVertices The number of vertices in the original graph.
* @return An array of modified weights for each vertex.
*/
private static double[] bellmanFord(double[][] edges, int numVertices) {
double[] dist = new double[numVertices + 1];
Arrays.fill(dist, INF);
dist[numVertices] = 0;
// Add edges from the new vertex to all original vertices
double[][] allEdges = Arrays.copyOf(edges, edges.length + numVertices);
for (int i = 0; i < numVertices; i++) {
allEdges[edges.length + i] = new double[] {numVertices, i, 0};
}
// Relax all edges V times
for (int i = 0; i < numVertices; i++) {
for (double[] edge : allEdges) {
int u = (int) edge[0];
int v = (int) edge[1];
double weight = edge[2];
if (dist[u] != INF && dist[u] + weight < dist[v]) {
dist[v] = dist[u] + weight;
}
}
}
// Check for negative weight cycles
for (double[] edge : allEdges) {
int u = (int) edge[0];
int v = (int) edge[1];
double weight = edge[2];
if (dist[u] + weight < dist[v]) {
throw new IllegalArgumentException("Graph contains a negative weight cycle");
}
}
return Arrays.copyOf(dist, numVertices);
}
/**
* Reweights the graph using the modified weights computed by Bellman-Ford.
*
* @param graph The original graph.
* @param modifiedWeights The modified weights from Bellman-Ford.
* @return The reweighted graph.
*/
public static double[][] reweightGraph(double[][] graph, double[] modifiedWeights) {
int numVertices = graph.length;
double[][] reweightedGraph = new double[numVertices][numVertices];
for (int i = 0; i < numVertices; i++) {
for (int j = 0; j < numVertices; j++) {
if (graph[i][j] != 0) {
// New weight = original weight + h(u) - h(v)
reweightedGraph[i][j] = graph[i][j] + modifiedWeights[i] - modifiedWeights[j];
}
}
}
return reweightedGraph;
}
/**
* Implements Dijkstra's algorithm for finding shortest paths from a source vertex.
*
* @param reweightedGraph The reweighted graph to run Dijkstra's on.
* @param source The source vertex.
* @param modifiedWeights The modified weights from Bellman-Ford.
* @return An array of shortest distances from the source to all other vertices.
*/
public static double[] dijkstra(double[][] reweightedGraph, int source, double[] modifiedWeights) {
int numVertices = reweightedGraph.length;
double[] dist = new double[numVertices];
boolean[] visited = new boolean[numVertices];
Arrays.fill(dist, INF);
dist[source] = 0;
for (int count = 0; count < numVertices - 1; count++) {
int u = minDistance(dist, visited);
visited[u] = true;
for (int v = 0; v < numVertices; v++) {
if (!visited[v] && reweightedGraph[u][v] != 0 && dist[u] != INF && dist[u] + reweightedGraph[u][v] < dist[v]) {
dist[v] = dist[u] + reweightedGraph[u][v];
}
}
}
// Adjust distances back to the original graph weights
for (int i = 0; i < numVertices; i++) {
if (dist[i] != INF) {
dist[i] = dist[i] - modifiedWeights[source] + modifiedWeights[i];
}
}
return dist;
}
/**
* Finds the vertex with the minimum distance value from the set of vertices
* not yet included in the shortest path tree.
*
* @param dist Array of distances.
* @param visited Array of visited vertices.
* @return The index of the vertex with minimum distance.
*/
public static int minDistance(double[] dist, boolean[] visited) {
double min = INF;
int minIndex = -1;
for (int v = 0; v < dist.length; v++) {
if (!visited[v] && dist[v] <= min) {
min = dist[v];
minIndex = v;
}
}
return minIndex;
}
}