package com.thealgorithms.stacks;
import java.util.Arrays;
import java.util.Stack;
/**
* Given an integer array. The task is to find the maximum of the minimum of
* every window size in the array. Note: Window size varies from 1 to the size
* of the Array.
* <p>
* For example,
* <p>
* N = 7
* arr[] = {10,20,30,50,10,70,30}
* <p>
* So the answer for the above would be : 70 30 20 10 10 10 10
* <p>
* We need to consider window sizes from 1 to length of array in each iteration.
* So in the iteration 1 the windows would be [10], [20], [30], [50], [10],
* [70], [30]. Now we need to check the minimum value in each window. Since the
* window size is 1 here the minimum element would be the number itself. Now the
* maximum out of these is the result in iteration 1. In the second iteration we
* need to consider window size 2, so there would be [10,20], [20,30], [30,50],
* [50,10], [10,70], [70,30]. Now the minimum of each window size would be
* [10,20,30,10,10] and the maximum out of these is 30. Similarly we solve for
* other window sizes.
*
* @author sahil
*/
public final class MaximumMinimumWindow {
private MaximumMinimumWindow() {
}
/**
* This function contains the logic of finding maximum of minimum for every
* window size using Stack Data Structure.
*
* @param arr Array containing the numbers
* @param n Length of the array
* @return result array
*/
public static int[] calculateMaxOfMin(int[] arr, int n) {
Stack<Integer> s = new Stack<>();
int[] left = new int[n + 1];
int[] right = new int[n + 1];
for (int i = 0; i < n; i++) {
left[i] = -1;
right[i] = n;
}
for (int i = 0; i < n; i++) {
while (!s.empty() && arr[s.peek()] >= arr[i]) {
s.pop();
}
if (!s.empty()) {
left[i] = s.peek();
}
s.push(i);
}
while (!s.empty()) {
s.pop();
}
for (int i = n - 1; i >= 0; i--) {
while (!s.empty() && arr[s.peek()] >= arr[i]) {
s.pop();
}
if (!s.empty()) {
right[i] = s.peek();
}
s.push(i);
}
int[] ans = new int[n + 1];
for (int i = 0; i <= n; i++) {
ans[i] = 0;
}
for (int i = 0; i < n; i++) {
int len = right[i] - left[i] - 1;
ans[len] = Math.max(ans[len], arr[i]);
}
for (int i = n - 1; i >= 1; i--) {
ans[i] = Math.max(ans[i], ans[i + 1]);
}
// Print the result
for (int i = 1; i <= n; i++) {
System.out.print(ans[i] + " ");
}
return ans;
}
public static void main(String[] args) {
int[] arr = new int[] {10, 20, 30, 50, 10, 70, 30};
int[] target = new int[] {70, 30, 20, 10, 10, 10, 10};
int[] res = calculateMaxOfMin(arr, arr.length);
assert Arrays.equals(target, res);
}
}