"""
Algorithm for calculating the most cost-efficient sequence for converting one string
into another.
The only allowed operations are
--- Cost to copy a character is copy_cost
--- Cost to replace a character is replace_cost
--- Cost to delete a character is delete_cost
--- Cost to insert a character is insert_cost
"""
def compute_transform_tables(
source_string: str,
destination_string: str,
copy_cost: int,
replace_cost: int,
delete_cost: int,
insert_cost: int,
) -> tuple[list[list[int]], list[list[str]]]:
"""
Finds the most cost efficient sequence
for converting one string into another.
>>> costs, operations = compute_transform_tables("cat", "cut", 1, 2, 3, 3)
>>> costs[0][:4]
[0, 3, 6, 9]
>>> costs[2][:4]
[6, 4, 3, 6]
>>> operations[0][:4]
['0', 'Ic', 'Iu', 'It']
>>> operations[3][:4]
['Dt', 'Dt', 'Rtu', 'Ct']
>>> compute_transform_tables("", "", 1, 2, 3, 3)
([[0]], [['0']])
"""
source_seq = list(source_string)
destination_seq = list(destination_string)
len_source_seq = len(source_seq)
len_destination_seq = len(destination_seq)
costs = [
[0 for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1)
]
ops = [
["0" for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1)
]
for i in range(1, len_source_seq + 1):
costs[i][0] = i * delete_cost
ops[i][0] = f"D{source_seq[i - 1]}"
for i in range(1, len_destination_seq + 1):
costs[0][i] = i * insert_cost
ops[0][i] = f"I{destination_seq[i - 1]}"
for i in range(1, len_source_seq + 1):
for j in range(1, len_destination_seq + 1):
if source_seq[i - 1] == destination_seq[j - 1]:
costs[i][j] = costs[i - 1][j - 1] + copy_cost
ops[i][j] = f"C{source_seq[i - 1]}"
else:
costs[i][j] = costs[i - 1][j - 1] + replace_cost
ops[i][j] = f"R{source_seq[i - 1]}" + str(destination_seq[j - 1])
if costs[i - 1][j] + delete_cost < costs[i][j]:
costs[i][j] = costs[i - 1][j] + delete_cost
ops[i][j] = f"D{source_seq[i - 1]}"
if costs[i][j - 1] + insert_cost < costs[i][j]:
costs[i][j] = costs[i][j - 1] + insert_cost
ops[i][j] = f"I{destination_seq[j - 1]}"
return costs, ops
def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]:
"""
Assembles the transformations based on the ops table.
>>> ops = [['0', 'Ic', 'Iu', 'It'],
... ['Dc', 'Cc', 'Iu', 'It'],
... ['Da', 'Da', 'Rau', 'Rat'],
... ['Dt', 'Dt', 'Rtu', 'Ct']]
>>> x = len(ops) - 1
>>> y = len(ops[0]) - 1
>>> assemble_transformation(ops, x, y)
['Cc', 'Rau', 'Ct']
>>> ops1 = [['0']]
>>> x1 = len(ops1) - 1
>>> y1 = len(ops1[0]) - 1
>>> assemble_transformation(ops1, x1, y1)
[]
"""
if i == 0 and j == 0:
return []
elif ops[i][j][0] in {"C", "R"}:
seq = assemble_transformation(ops, i - 1, j - 1)
seq.append(ops[i][j])
return seq
elif ops[i][j][0] == "D":
seq = assemble_transformation(ops, i - 1, j)
seq.append(ops[i][j])
return seq
else:
seq = assemble_transformation(ops, i, j - 1)
seq.append(ops[i][j])
return seq
if __name__ == "__main__":
_, operations = compute_transform_tables("Python", "Algorithms", -1, 1, 2, 2)
m = len(operations)
n = len(operations[0])
sequence = assemble_transformation(operations, m - 1, n - 1)
string = list("Python")
i = 0
cost = 0
with open("min_cost.txt", "w") as file:
for op in sequence:
print("".join(string))
if op[0] == "C":
file.write("%-16s" % "Copy %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost -= 1
elif op[0] == "R":
string[i] = op[2]
file.write("%-16s" % ("Replace %c" % op[1] + " with " + str(op[2])))
file.write("\t\t" + "".join(string))
file.write("\r\n")
cost += 1
elif op[0] == "D":
string.pop(i)
file.write("%-16s" % "Delete %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost += 2
else:
string.insert(i, op[1])
file.write("%-16s" % "Insert %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost += 2
i += 1
print("".join(string))
print("Cost: ", cost)
file.write("\r\nMinimum cost: " + str(cost))