"""
A non-recursive Segment Tree implementation with range query and single element update,
works virtually with any list of the same type of elements with a "commutative"
combiner.
Explanation:
https://www.geeksforgeeks.org/iterative-segment-tree-range-minimum-query/
https://www.geeksforgeeks.org/segment-tree-efficient-implementation/
>>> SegmentTree([1, 2, 3], lambda a, b: a + b).query(0, 2)
6
>>> SegmentTree([3, 1, 2], min).query(0, 2)
1
>>> SegmentTree([2, 3, 1], max).query(0, 2)
3
>>> st = SegmentTree([1, 5, 7, -1, 6], lambda a, b: a + b)
>>> st.update(1, -1)
>>> st.update(2, 3)
>>> st.query(1, 2)
2
>>> st.query(1, 1)
-1
>>> st.update(4, 1)
>>> st.query(3, 4)
0
>>> st = SegmentTree([[1, 2, 3], [3, 2, 1], [1, 1, 1]], lambda a, b: [a[i] + b[i] for i
... in range(len(a))])
>>> st.query(0, 1)
[4, 4, 4]
>>> st.query(1, 2)
[4, 3, 2]
>>> st.update(1, [-1, -1, -1])
>>> st.query(1, 2)
[0, 0, 0]
>>> st.query(0, 2)
[1, 2, 3]
"""
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
T = TypeVar("T")
class SegmentTree(Generic[T]):
def __init__(self, arr: list[T], fnc: Callable[[T, T], T]) -> None:
"""
Segment Tree constructor, it works just with commutative combiner.
:param arr: list of elements for the segment tree
:param fnc: commutative function for combine two elements
>>> SegmentTree(['a', 'b', 'c'], lambda a, b: f'{a}{b}').query(0, 2)
'abc'
>>> SegmentTree([(1, 2), (2, 3), (3, 4)],
... lambda a, b: (a[0] + b[0], a[1] + b[1])).query(0, 2)
(6, 9)
"""
any_type: Any | T = None
self.N: int = len(arr)
self.st: list[T] = [any_type for _ in range(self.N)] + arr
self.fn = fnc
self.build()
def build(self) -> None:
for p in range(self.N - 1, 0, -1):
self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1])
def update(self, p: int, v: T) -> None:
"""
Update an element in log(N) time
:param p: position to be update
:param v: new value
>>> st = SegmentTree([3, 1, 2, 4], min)
>>> st.query(0, 3)
1
>>> st.update(2, -1)
>>> st.query(0, 3)
-1
"""
p += self.N
self.st[p] = v
while p > 1:
p = p // 2
self.st[p] = self.fn(self.st[p * 2], self.st[p * 2 + 1])
def query(self, left: int, right: int) -> T | None:
"""
Get range query value in log(N) time
:param left: left element index
:param right: right element index
:return: element combined in the range [left, right]
>>> st = SegmentTree([1, 2, 3, 4], lambda a, b: a + b)
>>> st.query(0, 2)
6
>>> st.query(1, 2)
5
>>> st.query(0, 3)
10
>>> st.query(2, 3)
7
"""
left, right = left + self.N, right + self.N
res: T | None = None
while left <= right:
if left % 2 == 1:
res = self.st[left] if res is None else self.fn(res, self.st[left])
if right % 2 == 0:
res = self.st[right] if res is None else self.fn(res, self.st[right])
left, right = (left + 1) // 2, (right - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
test_array = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
test_updates = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
min_segment_tree = SegmentTree(test_array, min)
max_segment_tree = SegmentTree(test_array, max)
sum_segment_tree = SegmentTree(test_array, lambda a, b: a + b)
def test_all_segments() -> None:
"""
Test all possible segments
"""
for i in range(len(test_array)):
for j in range(i, len(test_array)):
min_range = reduce(min, test_array[i : j + 1])
max_range = reduce(max, test_array[i : j + 1])
sum_range = reduce(lambda a, b: a + b, test_array[i : j + 1])
assert min_range == min_segment_tree.query(i, j)
assert max_range == max_segment_tree.query(i, j)
assert sum_range == sum_segment_tree.query(i, j)
test_all_segments()
for index, value in test_updates.items():
test_array[index] = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()