"""
Hey, we are going to find an exciting number called Catalan number which is use to find
the number of possible binary search trees from tree of a given number of nodes.
We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)
Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
"""
"""
Our Contribution:
Basically we Create the 2 function:
1. catalan_number(node_count: int) -> int
Returns the number of possible binary search trees for n nodes.
2. binary_tree_count(node_count: int) -> int
Returns the number of possible binary trees for n nodes.
"""
def binomial_coefficient(n: int, k: int) -> int:
"""
Since Here we Find the Binomial Coefficient:
https://en.wikipedia.org/wiki/Binomial_coefficient
C(n,k) = n! / k!(n-k)!
:param n: 2 times of Number of nodes
:param k: Number of nodes
:return: Integer Value
>>> binomial_coefficient(4, 2)
6
"""
result = 1
k = min(k, n - k)
for i in range(k):
result *= n - i
result //= i + 1
return result
def catalan_number(node_count: int) -> int:
"""
We can find Catalan number many ways but here we use Binomial Coefficient because it
does the job in O(n)
return the Catalan number of n using 2nCn/(n+1).
:param n: number of nodes
:return: Catalan number of n nodes
>>> catalan_number(5)
42
>>> catalan_number(6)
132
"""
return binomial_coefficient(2 * node_count, node_count) // (node_count + 1)
def factorial(n: int) -> int:
"""
Return the factorial of a number.
:param n: Number to find the Factorial of.
:return: Factorial of n.
>>> import math
>>> all(factorial(i) == math.factorial(i) for i in range(10))
True
>>> factorial(-5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: factorial() not defined for negative values
"""
if n < 0:
raise ValueError("factorial() not defined for negative values")
result = 1
for i in range(1, n + 1):
result *= i
return result
def binary_tree_count(node_count: int) -> int:
"""
Return the number of possible of binary trees.
:param n: number of nodes
:return: Number of possible binary trees
>>> binary_tree_count(5)
5040
>>> binary_tree_count(6)
95040
"""
return catalan_number(node_count) * factorial(node_count)
if __name__ == "__main__":
node_count = int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
f"Given {node_count} nodes, there are {binary_tree_count(node_count)} "
f"binary trees and {catalan_number(node_count)} binary search trees."
)