package com.thealgorithms.searches;
import com.thealgorithms.devutils.searches.SearchAlgorithm;
/**
* Binary search is one of the most popular algorithms The algorithm finds the
* position of a target value within a sorted array
*
* <p>
* Worst-case performance O(log n) Best-case performance O(1) Average
* performance O(log n) Worst-case space complexity O(1)
*
* @author D Sunil (https://github.com/sunilnitdgp)
* @see SearchAlgorithm
*/
public class PerfectBinarySearch<T> implements SearchAlgorithm {
/**
* @param array is an array where the element should be found
* @param key is an element which should be found
* @param <T> is any comparable type
* @return index of the element
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
return search(array, key, 0, array.length - 1);
}
/**
* This method implements the Generic Binary Search iteratively.
*
* @param array The array to make the binary search
* @param key The number you are looking for
* @return the location of the key, or -1 if not found
*/
private static <T extends Comparable<T>> int search(T[] array, T key, int left, int right) {
while (left <= right) {
int median = (left + right) >>> 1;
int comp = key.compareTo(array[median]);
if (comp == 0) {
return median; // Key found
}
if (comp < 0) {
right = median - 1; // Adjust the right bound
} else {
left = median + 1; // Adjust the left bound
}
}
return -1; // Key not found
}
}